library("tidyverse")
library("rpart")
library("rpart.plot")
library("pguXAI")
data("iris")
main = function(){
df_data = tibble::as_tibble(iris)
grid <- expand.grid(cp = c(0.01), maxdepth = c(1,2), minsplit = c(100)) %>%
tibble::as_tibble()
gs <- pguXAI::gridSearchCV.rpart$new(df_data, label = "Species", grid = grid, k=10, repeats=5)
gs$train()
gs$scores %>%
#dplyr::select(c("accuracy", "auc_roc", "Balanced Accuracy")) %>%
print()
ctrl <- gs$best_model_parameter(score = "auc_roc")
model <- rpart::rpart(Species~., data = df_data, control = ctrl, parms = list(split = "gini"))
rpart.plot::rpart.plot(model)
print(ctrl)
cv <- pguXAI::crossVal.rpart$new(df_data, label = "Species", ctrl = ctrl)
cv$train(repeats = 5)
print(cv)
plot(cv)
}
main()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.