library(tidyverse)
library(pguXAI)
library(FactoMineR)
library(caret)
main = function(){
df_data <- iris %>%
dplyr::select(-Species)
classes_true <- iris$Species
nComponents <- 2
nCluster <- 5
PreProcessor <- caret::preProcess(x=df_data, method=c("center", "scale"), pcaComp = nComponents)
df_scaled <- predict(PreProcessor, df_data)
rslt_pca <- df_scaled %>%
FactoMineR::PCA(ncp = nComponents, scale.unit = FALSE, graph = FALSE)
df_pred <- as.data.frame(predict(rslt_pca, df_scaled)$coord)
km <- pguXAI::pca.KMeans$new(n=nCluster, seed = 42, verbose = TRUE)
km$train(obj = df_pred, n = 100)
km$probHist_plot() %>%
plot()
km$cluster_plot(obj = df_pred)
km$silhouette_plot(obj = df_pred) %>%
plot()
#
# km$df_centers %>%
# print()
fin <- "done"
fin
}
main()
library(tidyverse)
library(FactoMineR)
library(caret)
library(FeatureImpCluster)
library(flexclust)
df_data <- iris %>%
dplyr::select(-Species)
classes_true <- iris$Species
nComponents <- 2
PreProcessor <- caret::preProcess(x=df_data, method=c("center", "scale"), pcaComp = nComponents)
df_scaled <- predict(PreProcessor, df_data)
rslt_pca <- df_scaled %>%
FactoMineR::PCA(ncp = nComponents, scale.unit = FALSE, graph = FALSE)
df_pred <- as.data.frame(predict(rslt_pca, df_scaled)$coord)
set.seed(10)
res <- flexclust::kcca(df_pred, k=3, family=kccaFamily("kmeans"), simple = TRUE)
flexclust::clusters(res) %>%
print()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.