#' @title Viewshed Resolution Analysis
#' @description Aggregating the input DSM reduces computiation time on cost of accuracy.
#' The \code{resolution_analysis} function computes viewsheds at different resolutions and compares computaion time and accuracy to the original viewshed
#'
#' @param observer object of class \code{sf} with POINT geometries; Observer location(s) from where the resolution analysis should be computed.
#' @param max_distance numeric; Buffer distance to calculate the viewsheds
#' @param dsm_rast object of class \code{\link[terra]{rast}}; \code{\link[terra]{rast}} of the DSM
#' @param dtm_rast object of class \code{\link[terra]{rast}}; \code{\link[terra]{rast}} of the DTM
#' @param observer_height numeric > 0; Height of the observer (e.g. 1.7 meters)
#' @param raster_res integer vector; Resolution values that the viewshed raster should be aggregated to. All values must be a multible of the dsm_rast resolution
#'
#' @return object of class \code{\link[tibble]{tibble}}. Resolution, Similarity, Time [ms]
#' @export
#'
#' @importFrom magrittr %>%
#' @importFrom sf st_buffer
#' @importFrom sf st_coordinates
#' @importFrom sf st_crs
#' @importFrom sf st_geometry_type
#' @importFrom terra crs
#' @importFrom terra extract
#' @importFrom terra res
#' @importFrom terra crop
#' @importFrom terra mask
#' @importFrom terra vect
#' @importFrom terra aggregate
#' @importFrom terra rowFromY
#' @importFrom terra colFromX
#' @importFrom terra values
#' @importFrom terra ncol
#' @importFrom terra boundaries
#' @importFrom terra xyFromCell
#' @importFrom terra plot
#' @importFrom terra rast
#' @importFrom raster raster
resolution_analysis <- function(observer, dsm_rast, dtm_rast, greenspace_rast = NULL,
max_distance = 800, observer_height = 1.7,
raster_res = NULL, progress = FALSE) {
#### 1. Check input ####
# observer
if (!is(observer, "sf")) {
stop("observer must be a sf object")
} else if (sf::st_crs(observer)$units_gdal == "degree") {
stop("observer CRS unit must not be degree")
} else if (!as.character(sf::st_geometry_type(observer, by_geometry = FALSE)) == "POINT") {
stop("observer has no valid geometry")
}
# dsm_rast
if (!is(dsm_rast, "SpatRaster")) {
stop("dsm_rast needs to be a SpatRaster object")
} else if (sf::st_crs(terra::crs(dsm_rast))$epsg != sf::st_crs(observer)$epsg) {
stop("dsm_rast needs to have the same CRS as observer")
} else if(dsm_rast@ptr$res[1] != dsm_rast@ptr$res[2]) {
stop("dsm_rast: x and y resolution must be equal.\nSee https://github.com/STBrinkmann/GVI/issues/1")
}
# dtm_rast
if (!is(dtm_rast, "SpatRaster")) {
stop("dtm_rast needs to be a SpatRaster object")
} else if (sf::st_crs(terra::crs(dtm_rast))$epsg != sf::st_crs(observer)$epsg) {
stop("dtm_rast needs to have the same CRS as observer")
}
# greenspace_rast
if(!is.null(greenspace_rast)){
if (!is(greenspace_rast, "SpatRaster")) {
stop("greenspace_rast needs to be a SpatRaster object!")
} else if (sf::st_crs(terra::crs(greenspace_rast))$epsg != sf::st_crs(observer)$epsg) {
stop("greenspace_rast needs to have the same CRS as observer")
} else if(greenspace_rast@ptr$res[1] != greenspace_rast@ptr$res[2]) {
stop("greenspace_rast: x and y resolution must be equal.\nSee https://github.com/STBrinkmann/GVI/issues/1")
}
}
# max_distance
max_distance <- round(max_distance, digits = 0)
# raster_res
raster_res <- sort(raster_res)
dsm_res <- min(terra::res(dsm_rast))
if (is.null(raster_res)) {
raster_res = dsm_res
} else if (any(raster_res < min(terra::res(dsm_rast)))) {
stop("raster_res must be higher than the resolution of dsm_rast")
} else if (any((raster_res %% dsm_res) != 0)) {
stop(paste0("raster_res must be a multible of the dsm_rast resolution"))
}
rm(dsm_res)
# Main Loop
output <- dplyr::tibble(
Resolution = as.numeric(),
Similarity = as.numeric(),
Time = as.numeric()
)
if(progress){
pb = txtProgressBar(min = 0, max = nrow(observer), initial = 0)
}
for (i in 1:nrow(observer)) {
distance_tbl <- dplyr::tibble(
Resolution = as.numeric(),
Similarity = as.numeric(),
Time = as.numeric()
)
if(progress){
setTxtProgressBar(pb,i)
}
for(r in raster_res) {
#### 2. Prepare Data for viewshed analysis ####
# Coordinates of start point
x0 <- sf::st_coordinates(observer[i,])[1]
y0 <- sf::st_coordinates(observer[i,])[2]
# AOI
aoi <- terra::rast(crs = terra::crs(dsm_rast),
xmin = floor(x0 - r/2 - max_distance),
xmax = ceiling(x0 + r/2 + max_distance),
ymin = floor(y0 - r/2 - max_distance),
ymax = ceiling(y0 + r/2 + max_distance),
resolution = r, vals = 0) %>%
terra::crop(dsm_rast)
# Observer height
height0 <- as.numeric(terra::extract(dtm_rast, cbind(x0, y0))) + observer_height
# If the resolution parameter differs from the input-DSM resolution,
# resample the DSM to the lower resolution.
if (r == min(terra::res(dsm_rast))) {
dsm_rast_masked <- terra::crop(dsm_rast, aoi)
} else {
terra::terraOptions(progress = 0)
dsm_rast_masked <- terra::crop(dsm_rast, aoi) %>%
terra::aggregate(fact = r/terra::res(.))
terra::terraOptions(progress = 3)
}
#### 3. Compute viewshed ####
# Start row/col
r0 <- terra::rowFromY(aoi, y0)
c0 <- terra::colFromX(aoi, x0)
# Convert raster to vector
dsm_vec <- terra::values(dsm_rast_masked, mat = FALSE)
dsm_cpp_rast <- terra::rast(dsm_rast_masked) %>% raster::raster()
if(!is.null(greenspace_rast)){
this_greenspace_rast <- greenspace_rast %>%
terra::crop(aoi)
greenspace_vec <- terra::values(this_greenspace_rast, mat = FALSE)
greenspace_cpp_rast <- this_greenspace_rast %>% terra::rast() %>% raster::raster()
}
# Apply viewshed (C++) function
if(is.null(greenspace_rast)){
time_a <- Sys.time()
viewshed <- viewshed_cpp(dsm_cpp_rast, dsm_vec, c0, r0, max_distance, height0)
time_b <- Sys.time()
} else {
viewshed <- viewshed_cpp(dsm_cpp_rast, dsm_vec, c0, r0, max_distance, height0)
time_a <- Sys.time()
vgvi <- VGVI_cpp(dsm = dsm_cpp_rast, dsm_values = dsm_vec,
greenspace = greenspace_cpp_rast, greenspace_values = greenspace_vec,
x0 = c0, y0 = r0, radius = max_distance, h0 = height0,
fun = 1, m = 0.5, b = 8)
time_b <- Sys.time()
}
# Copy result of lineOfSight to the aoi raster
aoi[viewshed] <- 1
aoi_vals <- terra::values(aoi) %>%
na.omit()
distance_tbl <- dplyr::tibble(
Resolution = r,
Similarity = length(which(aoi_vals == 1)) / length(aoi_vals),
Time = as.numeric(difftime(time_b, time_a, units = "secs"))*1000
) %>%
dplyr::add_row(distance_tbl, .)
}
output <- distance_tbl %>%
dplyr::rowwise() %>%
dplyr::mutate(Similarity = min(distance_tbl[1,2], Similarity) / max(distance_tbl[1,2], Similarity)) %>%
dplyr::add_row(output, .)
}
return(output)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.