Pimage | R Documentation |
Create object to store binned images.
Pimage(x, ...) ## S3 method for class 'POSIXct' Pimage( x, type = c("primary", "intermediate"), pimg = NULL, grid = NULL, proj = NULL, ... ) ## Default S3 method: Pimage( x, type = c("primary", "intermediate"), pimg = NULL, grid = NULL, proj = NULL, ... )
x |
vector of POSIXct date-times for locations |
... |
arguments passed to |
type |
character, samples to bin, "primary" or "intermediate" |
pimg |
a Pimage object to accept these samples, if not supplied one will be created base on the inputs |
grid |
object to use as a template for grid specification,
can be a anything accepted by |
proj |
a character string of projection arguments, see Details |
These functions provide a data structure tools to store binned samples generated by the Metropolis samplers.
These functions provide spatial binning of samples. A spatial summary image is stored separately for each time step and may be mosaiced into the entire study region. Separate summaries may be combined to create a multiple-track summary.
If pimg
is supplied grid
and proj
are ignored
and binning is added to the existing pimg
. If pimg
or is not supplied grid
is used to build one with the
details from the fit object, and proj
is ignored. If only
proj
is supplied a grid is build using that projection and
the details from the fit object.
The proj
argument should be a PROJ.4 string, see
projection
and CRS
, or an
incomplete PROJ.4 name string. If the string consists only of the
projection family name then a central coordinate is calculated
from the samples.See rgdal::projInfo("proj")$name
for
candidate strings, and http://www.spatialreference.org for
more details.
Pimage
## Not run: ## Brownian motion tethered at each end brownian.bridge <- function(n, r) { x <- cumsum(rnorm(n, 0, 1)) x <- x - (x[1] + seq(0, 1, length=n) * (x[n] - x[1])) r * x } ## Number of days and number of obs days <- 50 n <- 200 x <- rgamma(n, 3) x <- cumsum(x) x <- x/x[n] b.scale <- 0.6 r.scale <- sample(c(0.1, 2, 10.2), n, replace=TRUE, prob=c(0.8, 0.18, 0.02)) set.seed(71) tms <- ISOdate(2001, 1, 1) + trunc(days * 24 * 60 * 60 *x) lon <- 120 + 20 * sin(2 * pi * x) + brownian.bridge(n, b.scale) + rnorm(n, 0, r.scale) lat <- -40 + 10 *(sin(3 * 2 * pi * x) + cos(2 * pi * x) - 1) + brownian.bridge(n, b.scale) + rnorm(n, 0, r.scale) x0 <- cbind(lon, lat) z0 <- trackMidpts(x0) n3 <- 1500 fx <- list(x = list(array(NA_real_, c(length(lon), 2L, n3))), z = list(array(NA_real_, c(length(lon)-1L, 2L, n3))), model = list(time = tms)) fx$x[[1L]][,,1L] <- x0 fx$z[[1L]][,,1L] <- z0 for (i in seq(n3)[-1L]) { fx$x[[1L]][,,i] <- jitter(x0, factor = 8L) fx$z[[1L]][,,i] <- jitter(z0, factor = 12L) } g <- raster(extent(x0) + 5, nrows = 350, ncols = 375, crs = "+proj=longlat +datum=WGS84") px <- Pimage(fx, grid = g) pz <- Pimage(fx, type = "intermediate", grid = g) for (i in seq(n3)[-1L]) { fx$x[[1L]][,,i] <- jitter(x0, factor = 8L) fx$z[[1L]][,,i] <- jitter(z0, factor = 12L) } px2 <- Pimage(fx, pimg = px) pz2 <- Pimage(fx, type = "intermediate", pimg = pz) px3 <- Pimage(fx, grid = g) pz3 <- Pimage(fx, grid = g, type = "intermediate") ## first px$p[[80]] ## this should be the sum of first and last px2$p[[80]] ## last px3$p[[80]] ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.