#' Constructing robust reference standards for Nof1 studies for precision medicine
#'
#' \code{referenceNof1} is the R implementation of the reference biomarker algorithm by (Zaim 2020)
#'
#' @noRd
.DEG_noiseq <- function(countTable,conditions){
## Identify DEG w/ NOISeq
##
## Args:
## countTable: a count matrix of the RNASeq data
## condtions: the experiment conditions of the two samples
##
## Returns:
## A data.frame of statistics regarding differential expression.
## Each row corresponds to a gene.
designDf = data.frame(row.names = c('case_rep1','control_rep1'),
condition = conditions)
mydata <- NOISeq::readData(data = countTable, factors = designDf)
myresults <- NOISeq::noiseq(mydata, factor = "condition", k = NULL, norm = "n",
nss = 3, v = 0.02, replicates = "no")
res = myresults@results[[1]]
return(res)
}
.DEG_noiseq.cb <- function(countTable,conditions){
## Identify DEG w/ NOISeq
##
## Args:
## countTable: a count matrix of the RNASeq data
## condtions: the experiment conditions of the two samples
##
## Returns:
## A data.frame of statistics regarding differential expression.
## Each row corresponds to a gene.
designDf = data.frame(row.names = colnames(countTable),
condition = conditions)
mydata <- NOISeq::readData(data = countTable, factors = designDf)
myresults = NOISeq::noiseqbio(mydata, k = 0.5, norm = "rpkm", nclust = 15, plot = FALSE, factor='condition')
res = myresults@results[[1]]
return(res)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.