library(tidyverse)
library(mymcmc)
library(Covid)
library(tidybayes)
load("./jags models/submission/save/submission.RData")
load("./jags models/submission/simulate/simdat.RData")
qmax <- .9
qmin <- .1
unique(data$name)
dat.first <- as.Date("2020-03-13")
dat.last <- as.Date("2020-05-15")
# all by age
res.all %>%
filter(date>as.Date("2020-03-13"))%>%
group_by(date,piter,age)%>%
summarise(value=sum(value))%>%
group_by(date,age)%>%
summarise(vmax=quantile(value,qmax,type=4),vmin=quantile(value,qmin,type=4))%>%
left_join(data%>%group_by(date,age)%>%summarise(pos.new=sum(pos.new)))%>%
ggplot()+
geom_ribbon(aes(x=date,ymin=vmin,ymax=vmax),alpha=.3)+
geom_line(aes(x=date,y=pos.new),col="red")+
facet_wrap(vars(age))+
scale_y_log10()+
theme_bw()+
ylab("cases")
ggsave("./analysis/tex/plotsnew/oos_predictions.pdf",
width = 6,height=5)
age.cur <- data$age%>%unique()
dfres <- res.all %>%
filter(date<dat.last,date>dat.first)%>%
filter(age %in% age.cur)%>%
left_join(data,by=c("name","date","age"))%>%
group_by(date,name,age)%>%
summarise(
qmin = quantile(value,probs=.1),
qmax = quantile(value,probs=.9),
coverage = pos.new <= qmax & pos.new >= qmin,
covexact = pos.new ==qmax | pos.new == qmin
)
#coverage
dfres %>%
ungroup()%>%
summarise(cov = mean(coverage)-mean(covexact)*.2)
dfres %>%
group_by(age)%>%
summarise(cov = mean(coverage)-mean(covexact)*.2)
dfres %>%
group_by(date)%>%
summarise(cov = mean(coverage)-mean(covexact)*.2)%>%
ggplot(aes(x=date))+geom_point(aes(y=cov))+
geom_hline(yintercept = .8,col="darkgrey")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.