GGDC10S | R Documentation |
The GGDC 10-Sector Database provides a long-run internationally comparable dataset on sectoral productivity performance in Africa, Asia, and Latin America. Variables covered in the data set are annual series of value added (in local currency), and persons employed for 10 broad sectors.
data("GGDC10S")
A data frame with 5027 observations on the following 16 variables.
Country
char: Country (43 countries)
Regioncode
char: ISO3 Region code
Region
char: Region (6 World Regions)
Variable
char: Variable (Value Added or Employment)
Year
num: Year (67 Years, 1947-2013)
AGR
num: Agriculture
MIN
num: Mining
MAN
num: Manufacturing
PU
num: Utilities
CON
num: Construction
WRT
num: Trade, restaurants and hotels
TRA
num: Transport, storage and communication
FIRE
num: Finance, insurance, real estate and business services
GOV
num: Government services
OTH
num: Community, social and personal services
SUM
num: Summation of sector GDP
https://www.rug.nl/ggdc/productivity/10-sector/
Timmer, M. P., de Vries, G. J., & de Vries, K. (2015). "Patterns of Structural Change in Developing Countries." . In J. Weiss, & M. Tribe (Eds.), Routledge Handbook of Industry and Development. (pp. 65-83). Routledge.
wlddev
, Collapse Overview
namlab(GGDC10S, class = TRUE)
# aperm(qsu(GGDC10S, ~ Variable, ~ Variable + Country, vlabels = TRUE))
library(ggplot2)
## World Regions Structural Change Plot
GGDC10S |>
fmutate(across(AGR:OTH, `*`, 1 / SUM),
Variable = ifelse(Variable == "VA","Value Added Share", "Employment Share")) |>
replace_outliers(0, NA, "min") |>
collap( ~ Variable + Region + Year, cols = 6:15) |> qDT() |>
pivot(1:3, names = list(variable = "Sector"), na.rm = TRUE) |>
ggplot(aes(x = Year, y = value, fill = Sector)) +
geom_area(position = "fill", alpha = 0.9) + labs(x = NULL, y = NULL) +
theme_linedraw(base_size = 14) +
facet_grid(Variable ~ Region, scales = "free_x") +
scale_fill_manual(values = sub("#00FF66", "#00CC66", rainbow(10))) +
scale_x_continuous(breaks = scales::pretty_breaks(n = 7), expand = c(0, 0))+
scale_y_continuous(breaks = scales::pretty_breaks(n = 10), expand = c(0, 0),
labels = scales::percent) +
theme(axis.text.x = element_text(angle = 315, hjust = 0, margin = ggplot2::margin(t = 0)),
strip.background = element_rect(colour = "grey30", fill = "grey30"))
# A function to plot the structural change of an arbitrary country
plotGGDC <- function(ctry) {
GGDC10S |>
fsubset(Country == ctry, Variable, Year, AGR:SUM) |>
fmutate(across(AGR:OTH, `*`, 1 / SUM), SUM = NULL,
Variable = ifelse(Variable == "VA","Value Added Share", "Employment Share")) |>
replace_outliers(0, NA, "min") |> qDT() |>
pivot(1:2, names = list(variable = "Sector"), na.rm = TRUE) |>
ggplot(aes(x = Year, y = value, fill = Sector)) +
geom_area(position = "fill", alpha = 0.9) + labs(x = NULL, y = NULL) +
theme_linedraw(base_size = 14) + facet_wrap( ~ Variable) +
scale_fill_manual(values = sub("#00FF66", "#00CC66", rainbow(10))) +
scale_x_continuous(breaks = scales::pretty_breaks(n = 7), expand = c(0, 0)) +
scale_y_continuous(breaks = scales::pretty_breaks(n = 10), expand = c(0, 0),
labels = scales::percent) +
theme(axis.text.x = element_text(angle = 315, hjust = 0, margin = ggplot2::margin(t = 0)),
strip.background = element_rect(colour = "grey20", fill = "grey20"),
strip.text = element_text(face = "bold"))
}
plotGGDC("BWA")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.