# This file is automatically generated, you probably don't want to edit this
MFAOptions <- if (requireNamespace("jmvcore", quietly=TRUE)) R6::R6Class(
"MFAOptions",
inherit = jmvcore::Options,
public = list(
initialize = function(
quantivar = NULL,
qualivar = NULL,
individus = NULL,
tuto = TRUE,
nFactors = 2,
groupdef = "Ex: 5,3,10,9,2,2",
grouptype = "Ex: s,s,s,s,s,n",
groupill = "Ex: 5,6",
groupname = "Ex: olf,vis,olfag,gust,ens,orig",
proba = 5,
abs = 1,
ord = 2,
ncp = 5,
graphclassif = FALSE,
nbclust = -1, ...) {
super$initialize(
package="MEDA",
name="MFA",
requiresData=TRUE,
...)
private$..quantivar <- jmvcore::OptionVariables$new(
"quantivar",
quantivar,
suggested=list(
"continuous"),
permitted=list(
"numeric"))
private$..qualivar <- jmvcore::OptionVariables$new(
"qualivar",
qualivar,
suggested=list(
"nominal",
"ordinal"),
permitted=list(
"factor"))
private$..individus <- jmvcore::OptionVariable$new(
"individus",
individus,
suggested=list(
"nominal"),
permitted=list(
"factor"))
private$..tuto <- jmvcore::OptionBool$new(
"tuto",
tuto,
default=TRUE)
private$..nFactors <- jmvcore::OptionInteger$new(
"nFactors",
nFactors,
default=2)
private$..groupdef <- jmvcore::OptionString$new(
"groupdef",
groupdef,
default="Ex: 5,3,10,9,2,2")
private$..grouptype <- jmvcore::OptionString$new(
"grouptype",
grouptype,
default="Ex: s,s,s,s,s,n")
private$..groupill <- jmvcore::OptionString$new(
"groupill",
groupill,
default="Ex: 5,6")
private$..groupname <- jmvcore::OptionString$new(
"groupname",
groupname,
default="Ex: olf,vis,olfag,gust,ens,orig")
private$..proba <- jmvcore::OptionNumber$new(
"proba",
proba,
default=5)
private$..abs <- jmvcore::OptionInteger$new(
"abs",
abs,
default=1)
private$..ord <- jmvcore::OptionInteger$new(
"ord",
ord,
default=2)
private$..ncp <- jmvcore::OptionInteger$new(
"ncp",
ncp,
default=5)
private$..newvar <- jmvcore::OptionOutput$new(
"newvar")
private$..graphclassif <- jmvcore::OptionBool$new(
"graphclassif",
graphclassif,
default=FALSE)
private$..nbclust <- jmvcore::OptionInteger$new(
"nbclust",
nbclust,
default=-1)
private$..newvar2 <- jmvcore::OptionOutput$new(
"newvar2")
self$.addOption(private$..quantivar)
self$.addOption(private$..qualivar)
self$.addOption(private$..individus)
self$.addOption(private$..tuto)
self$.addOption(private$..nFactors)
self$.addOption(private$..groupdef)
self$.addOption(private$..grouptype)
self$.addOption(private$..groupill)
self$.addOption(private$..groupname)
self$.addOption(private$..proba)
self$.addOption(private$..abs)
self$.addOption(private$..ord)
self$.addOption(private$..ncp)
self$.addOption(private$..newvar)
self$.addOption(private$..graphclassif)
self$.addOption(private$..nbclust)
self$.addOption(private$..newvar2)
}),
active = list(
quantivar = function() private$..quantivar$value,
qualivar = function() private$..qualivar$value,
individus = function() private$..individus$value,
tuto = function() private$..tuto$value,
nFactors = function() private$..nFactors$value,
groupdef = function() private$..groupdef$value,
grouptype = function() private$..grouptype$value,
groupill = function() private$..groupill$value,
groupname = function() private$..groupname$value,
proba = function() private$..proba$value,
abs = function() private$..abs$value,
ord = function() private$..ord$value,
ncp = function() private$..ncp$value,
newvar = function() private$..newvar$value,
graphclassif = function() private$..graphclassif$value,
nbclust = function() private$..nbclust$value,
newvar2 = function() private$..newvar2$value),
private = list(
..quantivar = NA,
..qualivar = NA,
..individus = NA,
..tuto = NA,
..nFactors = NA,
..groupdef = NA,
..grouptype = NA,
..groupill = NA,
..groupname = NA,
..proba = NA,
..abs = NA,
..ord = NA,
..ncp = NA,
..newvar = NA,
..graphclassif = NA,
..nbclust = NA,
..newvar2 = NA)
)
MFAResults <- if (requireNamespace("jmvcore", quietly=TRUE)) R6::R6Class(
"MFAResults",
inherit = jmvcore::Group,
active = list(
instructions = function() private$.items[["instructions"]],
plotgroup = function() private$.items[["plotgroup"]],
plotaxe = function() private$.items[["plotaxe"]],
plotind = function() private$.items[["plotind"]],
plotcat = function() private$.items[["plotcat"]],
plotvar = function() private$.items[["plotvar"]],
eigengroup = function() private$.items[["eigengroup"]],
descdesdim = function() private$.items[["descdesdim"]],
code = function() private$.items[["code"]],
plotclassif = function() private$.items[["plotclassif"]],
newvar = function() private$.items[["newvar"]],
newvar2 = function() private$.items[["newvar2"]]),
private = list(),
public=list(
initialize=function(options) {
super$initialize(
options=options,
name="",
title="Results of the Multiple Factor Analysis",
refs=list(
"factominer",
"mfa",
"explo"))
self$add(jmvcore::Html$new(
options=options,
name="instructions",
title="Instructions",
visible="(tuto)"))
self$add(jmvcore::Image$new(
options=options,
name="plotgroup",
title="Representation of the Groups",
width=600,
height=600,
renderFun=".plotgroups"))
self$add(jmvcore::Image$new(
options=options,
name="plotaxe",
title="Representation of the Partial Axes",
width=600,
height=600,
renderFun=".plotaxes"))
self$add(jmvcore::Image$new(
options=options,
name="plotind",
title="Representation of the Individuals",
width=800,
height=600,
renderFun=".plotindividus"))
self$add(jmvcore::Image$new(
options=options,
name="plotcat",
title="Representation of the Categories",
visible=FALSE,
width=800,
height=600,
renderFun=".plotcategory"))
self$add(jmvcore::Image$new(
options=options,
name="plotvar",
title="Representation of the Variables",
visible=FALSE,
width=700,
height=700,
renderFun=".plotvariables"))
self$add(R6::R6Class(
inherit = jmvcore::Group,
active = list(
eigen = function() private$.items[["eigen"]]),
private = list(),
public=list(
initialize=function(options) {
super$initialize(
options=options,
name="eigengroup",
title="Eigenvalue Decomposition")
self$add(jmvcore::Table$new(
options=options,
name="eigen",
title="Eigenvalue and (Cumulative) Percentage of Variance",
columns=list(
list(
`name`="component",
`title`="",
`type`="text"),
list(
`name`="eigenvalue",
`title`="Eigenvalue",
`type`="number"),
list(
`name`="purcent",
`title`="% of the variance",
`type`="number"),
list(
`name`="purcentcum",
`title`="Cumulative %",
`type`="number"))))}))$new(options=options))
self$add(jmvcore::Preformatted$new(
options=options,
name="descdesdim",
title="Automatic Description of the Dimensions"))
self$add(jmvcore::Preformatted$new(
options=options,
name="code",
title="R code"))
self$add(jmvcore::Image$new(
options=options,
name="plotclassif",
title="Representation of the Individuals According to Clusters",
visible="(graphclassif)",
width=800,
height=600,
renderFun=".plotclassif"))
self$add(jmvcore::Output$new(
options=options,
name="newvar",
title="Coordinates",
measureType="continuous",
initInRun=TRUE,
clearWith=list(
"actvars",
"quantisup",
"qualisup",
"individus",
"norme")))
self$add(jmvcore::Output$new(
options=options,
name="newvar2",
title="Coordinates",
measureType="continuous",
initInRun=TRUE,
clearWith=list(
"actvars",
"quantisup",
"qualisup",
"individus",
"norme")))}))
MFABase <- if (requireNamespace("jmvcore", quietly=TRUE)) R6::R6Class(
"MFABase",
inherit = jmvcore::Analysis,
public = list(
initialize = function(options, data=NULL, datasetId="", analysisId="", revision=0) {
super$initialize(
package = "MEDA",
name = "MFA",
version = c(1,0,0),
options = options,
results = MFAResults$new(options=options),
data = data,
datasetId = datasetId,
analysisId = analysisId,
revision = revision,
pause = NULL,
completeWhenFilled = FALSE,
requiresMissings = FALSE,
weightsSupport = 'none')
}))
#' Multiple Factor Analysis
#'
#'
#' @param data .
#' @param quantivar .
#' @param qualivar .
#' @param individus .
#' @param tuto .
#' @param nFactors .
#' @param groupdef .
#' @param grouptype .
#' @param groupill .
#' @param groupname .
#' @param proba .
#' @param abs .
#' @param ord .
#' @param ncp .
#' @param graphclassif .
#' @param nbclust .
#' @return A results object containing:
#' \tabular{llllll}{
#' \code{results$instructions} \tab \tab \tab \tab \tab a html \cr
#' \code{results$plotgroup} \tab \tab \tab \tab \tab an image \cr
#' \code{results$plotaxe} \tab \tab \tab \tab \tab an image \cr
#' \code{results$plotind} \tab \tab \tab \tab \tab an image \cr
#' \code{results$plotcat} \tab \tab \tab \tab \tab an image \cr
#' \code{results$plotvar} \tab \tab \tab \tab \tab an image \cr
#' \code{results$eigengroup$eigen} \tab \tab \tab \tab \tab a table \cr
#' \code{results$descdesdim} \tab \tab \tab \tab \tab a preformatted \cr
#' \code{results$code} \tab \tab \tab \tab \tab a preformatted \cr
#' \code{results$plotclassif} \tab \tab \tab \tab \tab an image \cr
#' \code{results$newvar} \tab \tab \tab \tab \tab an output \cr
#' \code{results$newvar2} \tab \tab \tab \tab \tab an output \cr
#' }
#'
#' @export
MFA <- function(
data,
quantivar,
qualivar,
individus,
tuto = TRUE,
nFactors = 2,
groupdef = "Ex: 5,3,10,9,2,2",
grouptype = "Ex: s,s,s,s,s,n",
groupill = "Ex: 5,6",
groupname = "Ex: olf,vis,olfag,gust,ens,orig",
proba = 5,
abs = 1,
ord = 2,
ncp = 5,
graphclassif = FALSE,
nbclust = -1) {
if ( ! requireNamespace("jmvcore", quietly=TRUE))
stop("MFA requires jmvcore to be installed (restart may be required)")
if ( ! missing(quantivar)) quantivar <- jmvcore::resolveQuo(jmvcore::enquo(quantivar))
if ( ! missing(qualivar)) qualivar <- jmvcore::resolveQuo(jmvcore::enquo(qualivar))
if ( ! missing(individus)) individus <- jmvcore::resolveQuo(jmvcore::enquo(individus))
if (missing(data))
data <- jmvcore::marshalData(
parent.frame(),
`if`( ! missing(quantivar), quantivar, NULL),
`if`( ! missing(qualivar), qualivar, NULL),
`if`( ! missing(individus), individus, NULL))
for (v in qualivar) if (v %in% names(data)) data[[v]] <- as.factor(data[[v]])
for (v in individus) if (v %in% names(data)) data[[v]] <- as.factor(data[[v]])
options <- MFAOptions$new(
quantivar = quantivar,
qualivar = qualivar,
individus = individus,
tuto = tuto,
nFactors = nFactors,
groupdef = groupdef,
grouptype = grouptype,
groupill = groupill,
groupname = groupname,
proba = proba,
abs = abs,
ord = ord,
ncp = ncp,
graphclassif = graphclassif,
nbclust = nbclust)
analysis <- MFAClass$new(
options = options,
data = data)
analysis$run()
analysis$results
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.