Description Usage Arguments Examples
Generate diffusion curves based expert parameters
1 2 3 4 5 6 7 8 9 10 | generate_diffusion_curves(pars, t_min = 0, t_max = NULL, dt = 1,
progress = NULL)
## S3 method for class 'DCGen.single'
generate_diffusion_curves(pars, t_min = 0,
t_max = NULL, dt = 1, progress = NULL)
## S3 method for class 'DCGen.multi'
generate_diffusion_curves(pars, t_min = 0,
t_max = NULL, dt = 1, progress = NULL)
|
pars |
parameters sampled from expert inputs |
t_min |
start time |
t_max |
end time |
dt |
showing time interval |
progress |
shiny progress bar; NULL if not needed |
1 2 3 4 5 6 7 8 9 10 | ExpA = new_expert("A", "Triangle", c(54.2, 10, 150),
"Triangle", c(2.3, 0, 5), "Triangle", c(5.1, 3, 8))
ExpB = new_expert("B", "Triangle", c(158.8, 30, 230),
"Triangle", c(5.7, 2, 15), "Triangle", c(9.9, 7, 13))
ExpC = new_expert("C", "Triangle", c(204.4, 30, 410),
"Triangle", c(7.1, 2, 10), "Triangle", c(3.5, 2, 6))
experts <- aggregate_experts(list(ExpA, ExpB, ExpC))
pars <- rand_parameters(experts, 1000, method='mixture', type='continuous')
curves <- generate_diffusion_curves(pars, 0, 10)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.