generate_diffusion_curves: Generate diffusion curves based expert parameters

Description Usage Arguments Examples

Description

Generate diffusion curves based expert parameters

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
generate_diffusion_curves(pars, t_min = 0, t_max = NULL, dt = 1,
  progress = NULL)

## S3 method for class 'DCGen.single'
generate_diffusion_curves(pars, t_min = 0,
  t_max = NULL, dt = 1, progress = NULL)

## S3 method for class 'DCGen.multi'
generate_diffusion_curves(pars, t_min = 0,
  t_max = NULL, dt = 1, progress = NULL)

Arguments

pars

parameters sampled from expert inputs

t_min

start time

t_max

end time

dt

showing time interval

progress

shiny progress bar; NULL if not needed

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
ExpA = new_expert("A", "Triangle", c(54.2, 10, 150),
                  "Triangle", c(2.3, 0, 5), "Triangle", c(5.1, 3, 8))
ExpB = new_expert("B", "Triangle", c(158.8, 30, 230),
                  "Triangle", c(5.7, 2, 15), "Triangle", c(9.9, 7, 13))
ExpC = new_expert("C", "Triangle", c(204.4, 30, 410),
                  "Triangle", c(7.1, 2, 10), "Triangle", c(3.5, 2, 6))

experts <- aggregate_experts(list(ExpA, ExpB, ExpC))
pars <- rand_parameters(experts, 1000, method='mixture', type='continuous')
curves <- generate_diffusion_curves(pars, 0, 10)

Sheffield-Diffusion-Curve/DCGen documentation built on May 30, 2019, 1:35 p.m.