plot-est.Regression-method: Plot method for the Bayesian estimation results

Description Usage Arguments Examples

Description

Plot method for the estimation results of the regression model.

Usage

1
2
3
4
## S4 method for signature 'est.Regression'
plot(x, par.options, style = c("chains", "acf",
  "density"), par2plot, reduced = FALSE, thinning, burnIn,
  priorMeans = TRUE, col.priorMean = 2, lty.priorMean = 1, ...)

Arguments

x

est.Regression class, created with method estimate,Regression-method

par.options

list of options for function par()

style

one out of "chains", "acf", "density"

par2plot

logical vector, which parameters to be plotted, order: (φ, γ^2)

reduced

logical (1), if TRUE, the chains are thinned and burn-in phase is dropped

thinning

thinning rate, if missing, the proposed one by the estimation procedure is taken

burnIn

burn-in phase, if missing, the proposed one by the estimation procedure is taken

priorMeans

logical(1), if TRUE (default), prior means are marked with a line

col.priorMean

color of the prior mean line, default 2

lty.priorMean

linetype of the prior mean line, default 1

...

optional plot parameters

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
model <- set.to.class("Regression", fun = function(phi, t) phi[1]*t + phi[2],
    parameter = list(phi = c(1, 2), gamma2 = 0.1))
data <- simulate(model, t = seq(0, 1, by = 0.01), plot.series = TRUE)
est <- estimate(model, t = seq(0, 1, by = 0.01), data, 1000)  # nMCMC small for example
plot(est)
plot(est, burnIn = 100, thinning = 2, reduced = TRUE)
plot(est, par.options = list(mar = c(5, 4.5, 4, 2) + 0.1, mfrow = c(3,1)), xlab = "iteration")
plot(est, style = "acf", main = "", par2plot = c(TRUE, TRUE, FALSE))
plot(est, style = "density", lwd = 2, priorMean = FALSE)
plot(est, style = "density", col.priorMean = 1, lty.priorMean = 2, main = "posterior")
plot(est, style = "acf", par.options = list(), main = "", par2plot = c(FALSE, FALSE, TRUE))

SimoneHermann/BaPreStoPro documentation built on May 10, 2017, 1:42 p.m.