library(tidyverse)
#define ages/years for assessment
age <- 1:15
end.year <- 2017
assess.year <- 1960:end.year
weights <- read.csv("data-raw/stock_weights.csv", header = TRUE)
#filter and rescale weights and get subset for assessment
sw.matrix <- weights %>% filter(year<=end.year,year>=min(assess.year)) %>%
mutate(index = springWt_3LNO/1000) %>%
select(year, age, index) %>%
pivot_wider(names_from = "age", values_from="index") %>%
select(-year)
sw.temp <- as.matrix(sw.matrix)
#to get mean value for first NAs
for(i in length(unique(weights$age)):1){
for(j in length(assess.year):1){
if(is.na(sw.temp[j,i])){sw.temp[j,i] <- mean(sw.temp[(j+1):(j+3),i])
break}
}
}
#to set rest of NAs to mean value
for(i in length(unique(weights$age)):1){
for(j in length(assess.year):1){
if(is.na(sw.temp[j,i])){sw.temp[j,i] <- sw.temp[j+1,i]}
}
}
sw.mat <- as.data.frame(sw.temp[,age])
load("R/sysdata.rda")
usethis::use_data(matur.mat,cw.mat,crl.mat, land, index,sw.mat,internal=T,overwrite = T)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.