initInferenceScoreSBM: Initialization of the inference procedure

Description Usage Arguments Details Value Examples

View source: R/initInferenceScoreSBM.R

Description

This function initialises the inference method by mixing a Gaussian mixture on the scores of each pair of nodes and a SBM on the resulting estimated network G

Usage

1
initInferenceScoreSBM(scoreList, directed = FALSE, estimOptions = list())

Arguments

scoreList

a list of the Scores (matrices of size nbNodes x nbNodes)

directed

a logical : TRUE if the underlying network is directed, FALSE otherwise (default value FALSE).

estimOptions

a list of parameters controlling the initialisation step of the inference method. See details.

Details

The list of parameters estimOptions essentially tunes the optimization process and the variational EM algorithm, with the following parameters

The output is a list containing the following entries.

Value

An initialisation point (list, see Details here after) for the VEM algortihms for several numbers of blocks

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
nbNodes  = 60
directed = TRUE
blockProp = c(1/3,1/2,1/6)
nbBlocks   = length(blockProp)
connectParam <- matrix(rbeta(nbBlocks^2,1.5,1.5 ),nbBlocks,nbBlocks)
connectParam <- 0.5*(connectParam + t(connectParam))
emissionParam <- list()
nbScores <- 2
emissionParam$noEdgeParam <- list(mean=rep(0,nbScores));
emissionParam$noEdgeParam$var <- diag(0.1,nrow = nbScores,ncol = nbScores)
emissionParam$edgeParam <- list( mean= 1:nbScores)
emissionParam$edgeParam$var <-  diag(0.1,nrow = nbScores,ncol = nbScores)
dataSim <- rScoreSBM(nbNodes,directed, blockProp,connectParam,emissionParam,seed = NULL)
init <- initInferenceScoreSBM(dataSim$scoreNetworks)

Sophiedonnet/NoisySBM documentation built on Oct. 20, 2020, 12:04 p.m.