devtools::load_all() # Load all packages and functions of this package for main.R
target_years = c(2019, 2020)
global_limits = c(5, 41)
moving_average = 10
global_file_type = "png"
# TODO: Replace the following sourced scripts with general functions derived from below to aggregate Plots together
# system.file("extdata", package = "BodenfeuchteGraphen") %>%
# dir(full.names = TRUE) %>%
# purrr::walk(~ source(.x))
plot_name <- "Altensteig"
sub_plot_name <- "Fichte"
data_table <- loadCorrectedAndRawData(plot_name, sub_plot_name)
filtered_data <- data_table %>%
filter(!(Datum >= as.POSIXct("2020-01-01", tz = "UTC")
& variable == "60_FDR_Y"))
# al_15_plot <- createCompletePlot(filtered_data, "15", target_years, global_limits, moving_average = moving_average)
# al_30_plot <- createCompletePlot(filtered_data, "30", target_years, global_limits, moving_average = moving_average)
# al_60_plot <- createCompletePlot(filtered_data, "60", target_years, global_limits, moving_average = moving_average)
#
# ggplot(data = filtered_data, mapping = aes(x = Datum))
al_full_data <- filtered_data %>%
select(-SubPlot, -Plot) %>%
mutate(Datum = as.Date(Datum)) %>%
mutate(variable = as.factor(stringr::str_match(variable, "[0-9]{2}"))) %>%
na.omit()
# FUll DATA
al_aggregate <- al_full_data %>%
filter(Datum < as.Date(paste0(target_years[1], "-01-01"))) %>%
mutate(Datum = lubridate::yday(Datum)) %>%
filter(Datum != 366) %>%
group_by(variable, Datum) %>%
summarise(sd_value = sd(value), value = mean(value)) %>%
mutate_at(vars(value, sd_value),
zoo::rollapply,
width = moving_average,
FUN = mean,
na.rm = TRUE,
partial = TRUE) %>%
mutate(type = "Aggregate") %>%
ungroup()
al_polygon <- al_aggregate %>%
group_by(variable) %>%
group_map(~ {
create_sd_polygon(.x$Datum, .x$value, .x$sd_value) %>%
mutate(variable = unique(.x$variable)) %>%
select(variable, Datum = x, value = y)
}, keep = TRUE) %>%
bind_rows() %>%
mutate(type = "Polygon")
# FULL DATA
al_current <- al_full_data %>%
filter(lubridate::year(Datum) %in% target_years) %>%
mutate(Jahr = lubridate::year(Datum)) %>%
group_by(variable, Datum) %>%
summarise(value = mean(value)) %>%
mutate_at(vars(value),
zoo::rollapply,
width = moving_average,
FUN = mean,
na.rm = TRUE,
partial = TRUE) %>%
mutate(type = as.character(lubridate::year(Datum))) %>%
mutate(Datum = lubridate::yday(Datum)) %>%
ungroup()
joined_data <- al_aggregate %>%
select(-sd_value) %>%
bind_rows(al_polygon, al_current) %>%
mutate(type = factor(type,
levels = c("Polygon", "Aggregate", "2019", "2020")))
ggplot(data = joined_data, mapping = aes(x = Datum, y = value)) +
geom_line(aes(color = type)) +
facet_wrap(facets = ~ variable, nrow = 3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.