variance_emulator: Variance Emulator builder

Description Usage Arguments Value

Description

Creates an emulator whose variance itself is emulated, for stochastic systems.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
variance_emulator(
  input_data_var,
  input_data_exp,
  npoints,
  output_names,
  ranges,
  kurt = 3,
  input_names = names(ranges),
  beta,
  u,
  c_lengths,
  funcs,
  bucov,
  deltas,
  ev,
  quadratic = TRUE,
  beta.var = FALSE,
  lik.method = "my"
)

Arguments

input_data_var

Required. A data.frame containing the input parameters and output variances from a set of simulator runs.

input_data_exp

Required. A data.frame containing the input parameters and output means from a set of simulator runs.

npoints

The number of runs performed per observed point.

output_names

Required. The list of outputs to emulate from input_data.

ranges

A named list of parameter ranges.

kurt

The value of the kurtosis. Default: 3

input_names

A list of input_names (if ranges is not provided).

beta

Optional: specifications for the regression coefficients, given as a list of lists list(mu, sigma) (a la Emulator specification).

u

Optional: the correlation structure for each output, given as a list of lists list(mu, sigma, corr).

c_lengths

Optional: a set of correlation lengths.

funcs

Optional: basis functions for the regression surface.

bucov

Optional: a list of functions giving the covariance between each of the beta parameters and u(x).

deltas

Optional: the nugget terms to include in u(x).

ev

Optional. Used for determining nugget terms in absence on delta

quadratic

Optional: should the regression surface be linear or quadratic? Default: F

beta.var

Optional: should the beta coefficient be assumed to be known or should model variance be included?

lik.method

Optional: method used to determine hyperparameters sigma and theta.

Value

A list of Emulator objects.


Tandethsquire/emulatorr documentation built on April 12, 2021, 1:08 a.m.