validation_pairs: Validation Set Comparisons and Implausibility

Description Usage Arguments Details Value Examples

View source: R/diagnostics.R

Description

Creates pairs plots on the set of validation points.

Usage

1
validation_pairs(ems, validation_points, z, orig_ranges, cb = FALSE, ...)

Arguments

ems

The list of trained emulators

validation_points

The validation set to be plotted

z

The target values for each emulated output

orig_ranges

The original ranges for the input parameters (if desired)

cb

Should a colourblind-friendly palette be used for plots? Default: FALSE

...

Any additional parameters to be passed to internal functions.

Details

Plots are organised as:

a) Emulated vs Simulator Output (lower diagonal). The emulator outputs are compared against the simulator outputs. Points whose emulated output lies outside the 3-sigma region of the simulated output are coloured red; those inside are coloured green; a gradient between the two extremes indicates goodness-of-fit;

b) Implausibility (upper diagonal). The implausibility for each point is calculated, using the same colour scaling as the lower diagonal.

Value

A data.frame containing the validation points, with goodness-of-fit and implausibility.

Examples

1
2
3
4
5
6
7
8
9
ems <- emulator_from_data(GillespieSIR, c('nS','nI','nR'),
 ranges = list(aSI = c(0.1, 0.8), aIR = c(0, 0.5), aSR = c(0, 0.05)),
 quadratic = TRUE)
targets <- list(
 list(val = 281, sigma = 10.43),
 list(val = 30, sigma = 11.16),
 list(val = 689, sigma = 14.32)
)
validation_pairs(ems, GillespieValidation, targets)

Tandethsquire/emulatorr documentation built on April 12, 2021, 1:08 a.m.