rhat <- function(x,
confidence = 0.95,
transform = FALSE,
autoburnin = FALSE,
multivariate = TRUE
){
x <- as.mcmc.list(x)
if (nchain(x) < 2)
stop("You need at least two chains")
if (autoburnin && start(x) < end(x)/2)
x <- window(x, start = end(x)/2 + 1)
Niter <- niter(x)
Nchain <- nchain(x)
Nvar <- nvar(x)
xnames <- varnames(x)
if (transform)
x <- gelman.transform(x)
x <- lapply(x, as.matrix)
S2 <- array(sapply(x, var, simplify = TRUE),
dim = c(Nvar, Nvar, Nchain)
)
W <- apply(S2, c(1, 2), mean)
xbar <- matrix(sapply(x, apply, 2, mean, simplify = TRUE),
nrow = Nvar, ncol = Nchain)
B <- Niter * var(t(xbar))
if (Nvar > 1 && multivariate) { #ph-edits
# CW <- chol(W)
# #This is W^-1*B.
# emax <- eigen(
# backsolve(CW, t(backsolve(CW, B, transpose = TRUE)), transpose = TRUE),
# symmetric = TRUE, only.values = TRUE)$values[1]
emax <- 1
mpsrf <- sqrt((1 - 1/Niter) + (1 + 1/Nvar) * emax/Niter)
} else {
mpsrf <- NULL
}
w <- diag(W)
b <- diag(B)
s2 <- matrix(apply(S2, 3, diag), nrow = Nvar, ncol = Nchain)
muhat <- apply(xbar, 1, mean)
var.w <- apply(s2, 1, var)/Nchain
var.b <- (2 * b^2)/(Nchain - 1)
cov.wb <- (Niter/Nchain) * diag(var(t(s2), t(xbar^2)) - 2 *
muhat * var(t(s2), t(xbar)))
V <- (Niter - 1) * w/Niter + (1 + 1/Nchain) * b/Niter
var.V <- ((Niter - 1)^2 * var.w + (1 + 1/Nchain)^2 * var.b +
2 * (Niter - 1) * (1 + 1/Nchain) * cov.wb)/Niter^2
df.V <- (2 * V^2)/var.V
df.adj <- (df.V + 3)/(df.V + 1)
B.df <- Nchain - 1
W.df <- (2 * w^2)/var.w
R2.fixed <- (Niter - 1)/Niter
R2.random <- (1 + 1/Nchain) * (1/Niter) * (b/w)
R2.estimate <- R2.fixed + R2.random
R2.upper <- R2.fixed + qf((1 + confidence)/2, B.df, W.df) *
R2.random
psrf <- cbind(sqrt(df.adj * R2.estimate), sqrt(df.adj * R2.upper))
dimnames(psrf) <- list(xnames, c("Point est.", "Upper C.I."))
out <- list(psrf = psrf, mpsrf = mpsrf, B = B, W = W) #added ph
class(out) <- "gelman.diag"
return( out )
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.