#' mybin
#'
#' @description Simulate a binomial distribution as a series of bernoulli trials
#'
#' @param iter - the number of n-samples to draw
#' @param n - sample size for each iteration
#' @param p - the probability of a 'Success'
#'
#' @return the calculated probability of success
#' @export
#'
#' @examples
#' mybin()
#'
#' x<-mybin(10000, n=50, p=0.69)
#'
mybin=function(iter=100,n=10, p=0.5){
# make a matrix to hold the samples
#initially filled with NA's
sam.mat=matrix(NA,nr=n,nc=iter, byrow=TRUE)
#Make a vector to hold the number of successes in each trial
succ=c()
for( i in 1:iter){
#Fill each column with a new sample
sam.mat[,i]=sample(c(1,0),n,replace=TRUE, prob=c(p,1-p))
#Calculate a statistic from the sample (this case it is the sum)
succ[i]=sum(sam.mat[,i])
}
#Make a table of successes
succ.tab=table(factor(succ,levels=0:n))
#Make a barplot of the proportions
barplot(succ.tab/(iter), col=rainbow(n+1), main="Binomial simulation", xlab="Number of successes")
#succ.tab/iter
return(succ.tab/iter)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.