View source: R/utils_MarkMissing.R
MarkMissing | R Documentation |
Return Column and Row Names of Samples and Probes under the Missingness Theshold
MarkMissing(dnaM_df, sampMissing_p = 0.5, probeMissing_p = 0.25)
dnaM_df |
A data frame of DNA methylation values. Samples are columns. Row names are probe IDs. |
sampMissing_p |
The maximum proportion of missingness allowed in a sample. Defaults to 50%. |
probeMissing_p |
The maximum proportion of missingness allowed in a probe. Defaults to 25%. |
Before calculating the missing proportion of samples, probes with missingness greater than the threshold are dropped first.
A list of four entries:
dropSamples
: the column names of samples with more than
sampMissing_p
percent missing values
keepSamples
: the column names of samples with less than or
equal to sampMissing_p
percent missing values
dropProbes
: the row names of probes with more than
probeMissing_p
percent missing values
keepProbes
: the row names of probes with less than or equal
to probeMissing_p
percent missing values
### Setup ###
values_num <- c(
0.1, 0.1, 0.1, 0.1, 0.1,
0.1, 0.1, 0.1, 0.1, NA,
0.1, 0.1, 0.1, 0.1, NA,
0.1, 0.1, 0.1, NA, NA,
0.1, 0.1, 0.1, NA, NA,
0.1, 0.1, NA, NA, NA,
0.1, 0.1, NA, NA, NA,
0.1, NA, NA, NA, NA,
NA, NA, NA, NA, NA
)
values_mat <- matrix(values_num, nrow = 9, ncol = 5, byrow = TRUE)
rownames(values_mat) <- paste0("probe_0", 1:9)
colnames(values_mat) <- paste0("sample_0", 1:5)
values_df <- as.data.frame(values_mat)
### Simple Calculations ###
MarkMissing(values_df)
MarkMissing(values_df, probeMissing_p = 0.5)
MarkMissing(values_df, sampMissing_p = 0.25)
### Using the Output ###
mark_ls <- MarkMissing(values_df, probeMissing_p = 0.5)
valuesPurged_df <- values_df[ mark_ls$keepProbes, mark_ls$keepSamples ]
valuesPurged_df
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.