knitr::opts_chunk$set(
    collapse = TRUE,
    comment = "#>",
    crop = NULL
    ## cf https://stat.ethz.ch/pipermail/bioc-devel/2020-April/016656.html
)

This vignette briefly recaps the main concepts of QFeatures on which scp relies. More in depth information is to be found in the QFeatures vignettes.

The QFeatures class

The QFeatures class (@Gatto2023-ry) is based on the MultiAssayExperiment class that holds a collection of SummarizedExperiment (or other classes that inherits from it) objects termed assays. The assays in a QFeatures object have a hierarchical relation: proteins are composed of peptides, themselves produced by spectra, as depicted in figure below.

A more technical representation is shown below, highlighting that each assay is a SummarizedExperiment (containing the quantitative data, row and column annotations for each individual assay), as well as a global sample annotation table, that annotates cells across all assays.

Those links are stored as part as the QFeatures object and connect the assays together. We load an example dataset from the scp package that is formatted as an QFeatures object and plot those connection.

library(scp)
data("scp1")
plot(scp1)

Accessing the data

The QFeatures class contains all the available and metadata. We here show how to retrieve those different pieces of information.

Quantitative data

The quantitative data, stored as matrix-like objects, can be accessed using the assay function. For example, we here extract the quantitative data for the first MS batch (and show a subset of it):

assay(scp1, "190321S_LCA10_X_FP97AG")[1:5, ]

Note that you can retrieve the list of available assays in a QFeatures object using the names() function.

names(scp1)

Feature metadata

For each individual assay, there is feature metadata available. We extract the list of metadata tables by using rowData() on the QFeatures object.

rowData(scp1)
rowData(scp1)[["proteins"]]

You can also retrieve the names of each rowData column for all assays with rowDataNames.

rowDataNames(scp1)

You can also get the rowData from different assays in a single table using the rbindRowData function. It will keep the common rowData variables to all selected assays (provided through i).

rbindRowData(scp1, i = 1:5)

Sample metadata

The sample metadata is retrieved using colData on the QFeatures object.

colData(scp1)

Note that you can easily access a colData column using the $ operator. See here how we extract the sample types from the colData.

scp1$SampleType

Subsetting the data

There are three dimensions we want to subset for:

Therefore, QFeatures support a three-index subsetting. This is performed through the simple bracket method [feature, sample, assay].

Subset assays

Suppose that we want to focus only on the first MS batch (190321S_LCA10_X_FP97AG) for separate processing of the data. Subsetting the QFeatures object for that assay is simply:

scp1[, , "190321S_LCA10_X_FP97AG"]

An alternative that results in exactly the same output is using the subsetByAssay method.

subsetByAssay(scp1, "190321S_LCA10_X_FP97AG")

Subset samples

Subsetting samples is often performed after sample QC where we want to keep only quality samples and sample of interest. In our example, the different samples are either technical controls or single-cells (macrophages and monocytes). Suppose we are only interested in macrophages, we can subset the data as follows:

scp1[, scp1$SampleType == "Macrophage", ]

An alternative that results in exactly the same output is using the subsetByColData method.

subsetByColData(scp1, scp1$SampleType == "Macrophage")

Subset features

Subsetting for features does more than simply subsetting for the features of interest, it will also take the features that are linked to that feature. Here is an example, suppose we are interested in the Q02878 protein.

scp1["Q02878", , ]

You can see it indeed retrieved that protein from the proteins assay, but it also retrieved 11 associated peptides in the peptides assay and 19 associated PSMs in 2 different MS runs.

An alternative that results in exactly the same output is using the subsetByColData method.

subsetByFeature(scp1, "Q02878")

You can also subset features based on the rowData. This is performed by filterFeatures. For example, we want to remove features that are associated to reverse sequence hits.

filterFeatures(scp1, ~ Reverse != "+")

Note however that if an assay is missing the variable that is used to filter the data (in this case the proteins assay), then all features for that assay are removed.

You can also subset the data based on the feature missingness using filterNA. In this example, we filter out proteins with more than 70 \% missing data.

filterNA(scp1, i = "proteins", pNA = 0.7)

Common processing steps

We here provide a list of common processing steps that are encountered in single-cell proteomics data processing and that are already available in the QFeatures package.

All functions below require the user to select one or more assays from the QFeatures object. This is passed through the i argument. Note that some datasets may contain hundreds of assays and providing the assay selection manually can become cumbersome. We therefore suggest the user to use regular expression (aka regex) to chose from the names() of the QFeautres object. A detailed cheatsheet about regex in R can be found here.

Missing data assignment

It often occurs that in MS experiements, 0 values are not true zeros but rather signal that is too weak to be detected. Therefore, it is advised to consider 0 values as missing data (NA). You can use zeroIsNa to automatically convert 0 values to NA in assays of interest. For instance, we here replace missing data in the peptides assay.

table(assay(scp1, "peptides") == 0)
scp1 <-zeroIsNA(scp1, "peptides")
table(assay(scp1, "peptides") == 0)

Feature aggregation

Shotgun proteomics analyses, bulk as well as single-cell, acquire and quantify peptides. However, biological inference is often performed at protein level. Protein quantitations can be estimated through feature aggregation. This is performed by aggregateFeatures, a function that takes an assay from the Qfeatures object and that aggregates its features with respect to a grouping variable in the rowData (fcol) and an aggregation function.

aggregateFeatures(scp1, i = "190321S_LCA10_X_FP97AG", fcol = "protein",
                  name = "190321S_LCA10_X_FP97AG_aggr",
                  fun = MsCoreUtils::robustSummary)

You can see that the aggregated function is added as a new assay to the QFeatures object. Note also that, under the hood, aggregateFeatures keeps track of the relationship between the features of the newly aggregated assay and its parent.

Normalization

An ubiquituous step that is performed in biological data analysis is normalization that is meant to remove undesired variability and to make different samples comparable. The normalize function offers an interface to a wide variety of normalization methods. See ?MsCoreUtils::normalize_matrix for more details about the available normalization methods. Below, we normalize the samples so that they are mean centered.

normalize(scp1, "proteins", method = "center.mean",
          name = "proteins_mcenter")

Other custom normalization can be applied using the sweep method, where normalization factors have to be supplied manually. As an example, we here normalize the samples using a scaled size factor.

sf <- colSums(assay(scp1, "proteins"), na.rm = TRUE) / 1E4
sweep(scp1, i = "proteins",
      MARGIN = 2, ## 1 = by feature; 2 = by sample
      STATS = sf, FUN = "/",
      name = "proteins_sf")

Log transformation

The QFeatures package also provide the logTransform function to facilitate the transformation of the quantitative data. We here show its usage by transforming the protein data using a base 2 logarithm with a pseudo-count of one.

logTransform(scp1, i = "proteins", base = 2, pc = 1,
             name = "proteins_log")

Imputation

Finally, QFeatures offers an interface to a wide variety of imputation methods to replace missing data by estimated values. The list of available methods is given by ?MsCoreUtils::impute_matrix. We demonstrate the use of this function by replacing missing data using KNN imputation.

anyNA(assay(scp1, "proteins"))
scp1 <- impute(scp1, i = "proteins", method ="knn", k = 3)
anyNA(assay(scp1, "proteins"))

Data visualization

Visualization of the feature and sample metadata is rather straightforward since those are stored as tables (see section Accessing the data). From those tables, any visualization tool can be applied. Note however that using ggplot2 require data.frames or tibbles but rowData and colData are stored as DFrames objects. You can easily convert one data format to another. For example, we plot the parental ion fraction (measure of spectral purity) for each of the three MS batches.

rd <- rbindRowData(scp1, i = 1:3)
library("ggplot2")
ggplot(data.frame(rd)) +
    aes(y = PIF,
        x = assay) +
    geom_boxplot()

Combining the metadata and the quantitative data is more challenging since the risk of data mismatch is increased. The QFeatures package therefore provides th longFormat function to transform a QFeatures object in a long DFrame table. For instance, we plot the quantitative data distribution for the first assay according to the acquisition channel index and colour with respect to the sample type. Both pieces of information are taken from the colData, so we provide them as colvars.

lf <- longFormat(scp1[, , 1],
                 colvars = c("SampleType", "Channel"))
ggplot(data.frame(lf)) +
    aes(x = Channel,
        y = value,
        colour = SampleType) +
    geom_boxplot()

A more in-depth tutorial about data visualization from a QFeatures object is provided in the QFeautres visualization vignette.

Session information {-}

knitr::opts_chunk$set(
    collapse = TRUE,
    comment = "",
    crop = NULL
)
sessionInfo()

License {-}

This vignette is distributed under a CC BY-SA license license.

Reference {-}



UCLouvain-CBIO/scp documentation built on Oct. 12, 2024, 2:37 a.m.