Description Usage Arguments Examples
View source: R/varsel_regression_rf.R
Similar approach to varSelRF, but for regresssion. Use full model to rank variables based on either imporatance = TRUE. It then steps through that sorted variable list with most important first and runs RF, store variables and Note: this sorts on Gini, by default. importance = TRUE ensures
1  | varsel_regression_rf(y, x, prog = F, ...)
 | 
y | 
 response a vector  | 
x | 
 predictors a data.frame  | 
... | 
 options to pass to randomForest  | 
1 2 3 4 5 6  | data(LakeTrophicModelling)
predictors_all <- predictors_all[predictors_all!="DATE_COL"]
all_dat <- data.frame(ltmData[predictors_all],LogCHLA=log10(ltmData$CHLA))
all_dat <- all_dat[complete.cases(all_dat),]
x<-varsel_regression_rf(all_dat$LogCHLA,all_dat[,names(all_dat)!="LogCHLA"],
                        ntree=100,prog=T, importance = TRUE)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.