###########################################################
# Update All TADA Reference Files
# ATTAINSRefTables.R
TADA_UpdateATTAINSOrgIDsRef()
TADA_UpdateATTAINSParamUseOrgRef()
# WQPWQXRefTables.R
TADA_UpdateWQXCharValRef()
TADA_UpdateMeasureUnitRef()
TADA_UpdateDetCondRef()
TADA_UpdateDetLimitRef()
TADA_UpdateActivityTypeRef()
TADA_UpdateCharacteristicRef()
TADA_UpdateMeasureQualifierCodeRef()
TADA_UpdateMonLocTypeRef()
TADA_UpdateWQPOrgProviderRef()
# CriteriaRefTables.R
TADA_UpdateEPACSTRef()
# TADAGeospatialRefLayers.R
TADA_UpdateTribalLayers()
###########################################################
## Update Example Data
TADA_UpdateExampleData <- function() {
# Generate Data_Nutrients_UT
Data_Nutrients_UT <- TADA_DataRetrieval(
statecode = "UT",
characteristicName = c("Ammonia", "Nitrate", "Nitrogen"),
startDate = "2020-10-01",
endDate = "2022-09-30",
ask = FALSE
)
print("Data_Nutrients_UT")
print(dim(Data_Nutrients_UT))
usethis::use_data(Data_Nutrients_UT,
internal = FALSE, overwrite = TRUE,
compress = "xz", version = 3, ascii = FALSE
)
rm(Data_Nutrients_UT)
# Generate Data_6Tribes_5y.rda
Data_6Tribes_5y <- TADA_DataRetrieval(
organization = c(
"REDLAKE_WQX",
"SFNOES_WQX",
"PUEBLO_POJOAQUE",
"FONDULAC_WQX",
"PUEBLOOFTESUQUE",
"CNENVSER"
),
startDate = "2018-01-01",
endDate = "2023-01-01",
ask = FALSE
)
print("Data_6Tribes_5y:")
print(dim(Data_6Tribes_5y))
usethis::use_data(Data_6Tribes_5y,
internal = FALSE, overwrite = TRUE,
compress = "xz", version = 3, ascii = FALSE
)
# Generate Data_6Tribes_5y_Harmonized.rda
y <- subset(Data_6Tribes_5y, Data_6Tribes_5y$TADA.ActivityMediaName %in% c("WATER"))
y <- TADA_RunKeyFlagFunctions(Data_6Tribes_5y)
rm(Data_6Tribes_5y)
y <- TADA_FlagMethod(y, clean = TRUE)
y <- TADA_FlagAboveThreshold(y, clean = TRUE)
y <- TADA_FlagBelowThreshold(y, clean = TRUE)
# y <- TADA_FindPotentialDuplicatesMultipleOrgs(y, dist_buffer = 100)
y <- TADA_FindPotentialDuplicatesSingleOrg(y)
y <- dplyr::filter(y, !(MeasureQualifierCode %in% c("D", "H", "ICA", "*")))
y <- TADA_SimpleCensoredMethods(y,
nd_method = "multiplier",
nd_multiplier = 0.5,
od_method = "as-is",
od_multiplier = "null"
)
y <- dplyr::filter(y, TADA.ResultMeasureValueDataTypes.Flag != "Text" &
TADA.ResultMeasureValueDataTypes.Flag != "NA - Not Available" &
!is.na(TADA.ResultMeasureValue))
Data_6Tribes_5y_Harmonized <- TADA_HarmonizeSynonyms(y)
print("Data_6Tribes_5y_Harmonized:")
print(dim(Data_6Tribes_5y_Harmonized))
usethis::use_data(Data_6Tribes_5y_Harmonized,
internal = FALSE, overwrite = TRUE,
compress = "xz", version = 3, ascii = FALSE
)
rm(Data_6Tribes_5y_Harmonized)
rm(y)
# Generate Data_NCTCShepherdstown_HUC12
Data_NCTCShepherdstown_HUC12 <- TADA_DataRetrieval(
startDate = "2020-03-14",
endDate = "null",
countycode = "null",
huc = "02070004",
siteid = "null",
siteType = "null",
characteristicName = "null",
characteristicType = "null",
sampleMedia = "null",
statecode = "null",
organization = "null",
project = "null",
applyautoclean = TRUE,
ask = FALSE
)
print("Data_NCTCShepherdstown_HUC12:")
print(dim(Data_NCTCShepherdstown_HUC12))
usethis::use_data(Data_NCTCShepherdstown_HUC12, internal = FALSE, overwrite = TRUE, compress = "xz", version = 3, ascii = FALSE)
rm(Data_NCTCShepherdstown_HUC12)
# Generate Data_R5_TADAPackageDemo
Data_R5_TADAPackageDemo <- TADA_DataRetrieval(
startDate = "2019-05-01",
endDate = "2019-05-07",
countycode = "null",
huc = "null",
siteid = "null",
siteType = "null",
characteristicName = "null",
characteristicType = "null",
sampleMedia = "null",
statecode = c("IL", "IN", "MI", "MN", "OH", "WI"),
organization = "null",
project = "null",
applyautoclean = FALSE,
ask = FALSE
)
print("Data_R5_TADAPackageDemo:")
print(dim(Data_R5_TADAPackageDemo))
usethis::use_data(Data_R5_TADAPackageDemo, internal = FALSE, overwrite = TRUE, compress = "xz", version = 3, ascii = FALSE)
rm(Data_R5_TADAPackageDemo)
# Generate MODULE 3 VIGNETTE EXAMPLE DATA
# Get data
Data_WV <- TADA_DataRetrieval(
startDate = "2020-03-14",
huc = "02070004",
applyautoclean = FALSE,
ask = FALSE
)
# Remove non-surface water media
# OPTIONAL
Data_WV <- TADA_AnalysisDataFilter(
Data_WV,
clean = TRUE,
surface_water = TRUE,
ground_water = FALSE,
sediment = FALSE
)
# Remove single org duplicates
# REQUIRED
Data_WV <- TADA_FindPotentialDuplicatesSingleOrg(
Data_WV
)
Data_WV <- dplyr::filter(
Data_WV,
TADA.SingleOrgDup.Flag == "Unique"
)
# Run autoclean
# REQUIRED
Data_WV <- TADA_AutoClean(Data_WV)
# Prepare censored results
# REQUIRED
Data_WV <- TADA_SimpleCensoredMethods(
Data_WV,
nd_method = "multiplier",
nd_multiplier = 0.5,
od_method = "as-is",
od_multiplier = "null"
)
# Remove multiple org duplicates
# OPTIONAL
# Data_WV <- TADA_FindPotentialDuplicatesMultipleOrgs(
# Data_WV
# )
# Data_WV <- dplyr::filter(
# Data_WV,
# TADA.ResultSelectedMultipleOrgs == "Y"
# )
# Filter out remaining irrelevant data, NA's and empty cols
# REQUIRED
unique(Data_WV$TADA.ResultMeasureValueDataTypes.Flag)
sum(is.na(Data_WV$TADA.ResultMeasureValue))
Data_WV <- TADA_AutoFilter(Data_WV)
unique(Data_WV$TADA.ResultMeasureValueDataTypes.Flag)
sum(is.na(Data_WV$TADA.ResultMeasureValue))
# Remove results with QC issues
# REQUIRED
Data_WV <- TADA_RunKeyFlagFunctions(
Data_WV,
clean = TRUE
)
# CM note for team discussion: Should results with NA units be dealt with now as well within TADA_AutoFilter?
# Flag above and below threshold. Do not remove
# OPTIONAL
Data_WV <- TADA_FlagAboveThreshold(Data_WV, clean = FALSE, flaggedonly = FALSE)
Data_WV <- TADA_FlagBelowThreshold(Data_WV, clean = FALSE, flaggedonly = FALSE)
# Harmonize synonyms
# OPTIONAL
Data_WV <- TADA_HarmonizeSynonyms(Data_WV)
# Review
Data_WV <- dplyr::filter(Data_WV, TADA.CharacteristicName %in% c("ZINC", "PH", "NITRATE"))
TADA_FieldValuesTable(Data_WV, field = "TADA.ComparableDataIdentifier")
# Save example data
Data_HUC8_02070004_Mod1Output <- Data_WV
print("Data_HUC8_02070004_Mod1Output:")
print(dim(Data_HUC8_02070004_Mod1Output))
usethis::use_data(Data_HUC8_02070004_Mod1Output,
internal = FALSE,
overwrite = TRUE,
compress = "xz",
version = 3,
ascii = FALSE
)
rm(Data_HUC8_02070004_Mod1Output)
rm(Data_WV)
}
###########################################################
# Run styler to style code
# https://style.tidyverse.org/
# See: https://styler.r-lib.org/reference/style_pkg.html
# Run the following with defaults
library(styler)
style_pkg()
###########################################################
# spell check
library(spelling)
spelling::spell_check_package(
pkg = ".",
vignettes = TRUE
)
# run to update spelling word list
spelling::get_wordlist()
spelling::update_wordlist()
###########################################################
# Run devtools check and test
devtools::test()
# devtools::check()
# more robust test for releases (includes broken link check)
devtools::check(manual = TRUE, remote = TRUE, incoming = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.