Fitting models in batch mode with config files is nice, but sometimes you just want to look at some data and/or run a model manually. In this case you can still leverage config files to specify the data based on what's available on ScienceBase.

library(mda.streams)
library(dplyr)
library(streamMetabolizer)

First make a config file.

sites <- c("nwis_01649190", "nwis_06478522")
config <- stage_metab_config(
  tag='0.0.13', strategy='initial K600 estimate', date=Sys.time(), 
  model="metab_mle", model_args="list(specs=specs('mle'))", site=sites, 
  start_date="2015-03-15", end_date="2015-04-15", filename=NULL)

Then use config_to_metab with prep_only=TRUE to get a list of the input data and arguments rather than a full metabolism model. Set the names of the list in a way that distinguishes meaningfully among the rows in config - that part is up to you to determine.

prep_list <- config_to_metab(config, rows=1:nrow(config), prep_only=TRUE) %>%
  setNames(sites)

The result is a list as long as nrow(config), where each list element is itself a list containing data, data_daily, and other arguments for that config row.

names(prep_list[[1]])

You can now inspect the data.

lapply(prep_list, function(prep) range(prep$data$solar.time))

You can still run the model if you like.

mm <- do.call(metab, prep_list[[1]])

The resulting model can now be explored.

plot_DO_preds(predict_DO(mm, "2015-04-10", "2015-04-15"))


USGS-R/mda.streams documentation built on June 3, 2023, 8:43 a.m.