# "`-''-/").___..--''"`-._
# (`6_ 6 ) `-. ( ).`-.__.`) WE ARE ...
# (_Y_.)' ._ ) `._ `. ``-..-' PENN STATE!
# _ ..`--'_..-_/ /--'_.' ,'
# (il),-'' (li),' ((!.-'
#
#
# Author: Guido Cervone (cervone@psu.edu), Martina Calovi (mxc895@psu.edu), Laura Clemente-Harding (laura@psu.edu)
# Geoinformatics and Earth Observation Laboratory (http://geolab.psu.edu)
# Department of Geography and Institute for CyberScience
# The Pennsylvania State University
#
#' RAnEn::verifySpreadSkill
#'
#' RAnEn::verifySpreadSkill calculates the binned spread skill correlation between ensemble spread
#' and error.
#'
#' @details Bootstrap confidence interval is defaulted to 0.95.
#' To change this, use `options(RAnEnExtra_boot_conf = 0.9)`.
#'
#' @author Guido Cervone \email{cervone@@psu.edu}
#' @author Martina Calovi \email{mxc895@@psu.edu}
#' @author Laura Clemente-Harding \email{laura@@psu.edu}
#'
#' @param anen.ver A 4-dimensional array. This array is usually created from the `value` column of
#' the `analogs` member in the results of `RAnEn::generateAnalogs`. The dimensions should be
#' `[stations, times, lead times, members]`.
#' @param obs.ver A 3-dimensional array. The dimensions should be `[stations, times, lead times]`.
#' You can generate the array using `RAnEn::alignObservations`.
#' @param boot Whether to use bootstrap.
#' @param R The number of bootstrap replicates. Used by the function `boot::boot`.
#' @param intervals The number of entries of days and lead times in each calculation iteration.
#' @param na.rm Whether to remove NA values.
#'
#' @md
#' @export
verifyBinnedSpreadSkill <- function(anen.ver, obs.ver, boot=F, R=1000, intervals = 13, na.rm=T) {
stopifnot(length(dim(anen.ver)) == 4)
stopifnot(length(dim(obs.ver)) == 3)
if ( !identical(dim(anen.ver)[1:3], dim(obs.ver)[1:3]) ) {
cat("Error: Observations and Forecasts have incompatible dimensions.\n")
return(NULL)
}
# Convert to [stations x days x flt]
obs <- as.vector(obs.ver)
anen <- matrix(anen.ver,ncol=dim(anen.ver)[4])
m <- ncol(anen) # Number of members
mdegf <- m / (m+1)
# Compute indexes
anen.mean <- rowMeans(anen ,na.rm=na.rm)
error <- ( anen.mean-obs )^2
spread <- rowSums((anen - rowMeans(anen, na.rm = na.rm))^2,
na.rm = na.rm) / (dim(anen)[2] - 1)
#anen.all <- matrix(anen.ver, nrow=c(dim(anen.ver)[1] * dim(anen.ver)[2] * dim(anen.ver)[3]) )
# Combine the indeces and remove the NAs
mat <- data.frame(mean=anen.mean, spread=spread, error=error)
if ( na.rm == T )
mat <- na.omit( mat )
# Reorder according to the spread
o <- order( mat$spread )
mat <- mat[o, ]
# Compute how many days/flt we compute at once
step <- floor ( nrow(mat) / intervals )
spread.skill.res <- matrix( nrow=intervals, ncol=2)
# Store the results of the bootstrap
boot.res <- matrix(NA, ncol=intervals, nrow=3)
start = 0
for( i in 1:intervals ){
end <- start + step
if(boot == T){ #bootstrap confidence intervals only if required
temp <- mat[start:end, 3]
err.boot <- boot.fun.ver(temp, R)
# Normalize the results
boot.res[, i] <- sqrt( err.boot * mdegf )
}
spread.skill.res[i, 1] <- sqrt(mean(mat[start:end, 2]))
spread.skill.res[i, 2] <- sqrt(mean(mat[start:end, 3]) * mdegf)
start <- end # I think it should be end + 1
}
R2 <- ( cor(spread.skill.res[,1],spread.skill.res[,2],use="pairwise.complete.obs") )^2
return( list(R2=R2, spread.skill.res=spread.skill.res, boot.res=boot.res) )
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.