#' Clean contacts data
#'
#' @description Cleans and un-nests contact data. Contact data is returned by
#' [`get_contacts()`].
#'
#' @param contacts A `tibble` containing the contact data.
#' @param contacts_address_history_clean A `tibble` containing the cleaned
#' address history data from contacts (data is cleaned by
#' [`clean_contact_address_history()`].
#' @param contacts_vacc_history_clean A `tibble` containing the cleaned
#' vaccination history data from contacts (data is cleaned by
#' [`clean_contact_vax_history()`].
#' @param contacts_becoming_cases A `tibble` containing the cleaned data on
#' contacts that became cases (date is produced using
#' [`cases_from_contacts()`]).
#'
#' @return A `tibble` containing the cleaned case data.
#' @export
#'
#' @examples
#' \dontrun{
#' url <- "https://MyGoDataServer.com/"
#' username <- "myemail@email.com"
#' password <- "mypassword"
#' outbreak_id <- "3b5554d7-2c19-41d0-b9af-475ad25a382b"
#'
#' contacts <- get_contacts(
#' url = url,
#' username = username,
#' password = password,
#' outbreak_id = outbreak_id
#' )
#'
#' locations <- get_locations(
#' url = url,
#' username = username,
#' password = password
#' )
#'
#' locations_clean <- clean_locations(locations = locations)
#'
#' language_tokens <- get_language_tokens(
#' url = url,
#' username = username,
#' password = password,
#' language = "english_us"
#' )
#'
#' # other cleaned data required for `clean_contacts()`
#' contacts_vacc_history_clean <- clean_contact_vax_history(
#' contacts = contacts,
#' language_tokens = language_tokens
#' )
#' contacts_address_history_clean <- clean_contact_address_history(
#' contacts = contacts,
#' locations_clean = locations_clean,
#' language_tokens = language_tokens
#' )
#'
#' cases <- get_cases(
#' url = url,
#' username = username,
#' password = password,
#' outbreak_id = outbreak_id
#' )
#' cases_address_history_clean <- clean_case_address_history(
#' cases = cases,
#' locations_clean = locations_clean,
#' language_tokens = language_tokens
#' )
#' cases_vacc_history_clean <- clean_case_vax_history(
#' cases = cases,
#' language_tokens = language_tokens
#' )
#' cases_dateranges_history_clean <- clean_case_med_history(
#' cases = cases,
#' language_tokens = language_tokens
#' )
#'
#' cases_clean <- clean_cases(
#' cases = cases,
#' cases_address_history_clean = cases_address_history_clean,
#' cases_vacc_history_clean = cases_vacc_history_clean,
#' cases_dateranges_history_clean = cases_dateranges_history_clean,
#' language_tokens = language_tokens
#' )
#' contacts_becoming_cases <- cases_from_contacts(cases_clean = cases_clean)
#'
#' contacts_clean <- clean_contacts(
#' contacts = contacts,
#' contacts_address_history_clean = cases_address_history_clean,
#' contacts_vacc_history_clean = cases_vacc_history_clean,
#' contacts_becoming_cases = contacts_becoming_cases
#' )
#' }
clean_contacts <- function(contacts,
contacts_address_history_clean,
contacts_vacc_history_clean,
contacts_becoming_cases) {
# Remove all deleted records
contacts_clean <- dplyr::filter(
.data = contacts,
.data$deleted == FALSE | is.na(.data$deleted)
)
# Remove all nested fields, otherwise problems with exporting to excel
contacts_clean <- dplyr::select_if(
.tbl = contacts_clean,
.predicate = purrr::negate(is.list)
)
# take out all that are not core variables, otherwise diff versions and
# problems exporting to excel
contacts_clean <- dplyr::select(
.data = contacts_clean,
-dplyr::contains("questionnaireAnswers")
)
# standardize column name syntax
contacts_clean <- janitor::clean_names(dat = contacts_clean)
# label timestamps as datetime
contacts_clean <- dplyr::rename(
.data = contacts_clean,
date_of_birth = "dob",
date_of_follow_up_start = "follow_up_start_date",
date_of_follow_up_end = "follow_up_end_date",
datetime_updated_at = "updated_at",
datetime_created_at = "created_at"
)
# take out other unnecessary vars that are unnecessary and may confuse
# (i.e. was_case for cases)
contacts_clean <- dplyr::select(
.data = contacts_clean,
-c(
"is_date_of_reporting_approximate",
"was_contact",
"follow_up_original_start_date",
"type",
"deleted",
"created_on"
)
)
#clean up all character fields
contacts_clean <- dplyr::mutate(
.data = contacts_clean,
dplyr::across(dplyr::where(is.character), na_if, "")
)
# clean date formats (TODO: edit this so that we can see time stamps)
contacts_clean <- dplyr::mutate_at(
.tbl = contacts_clean,
.vars = dplyr::vars(dplyr::starts_with("date_")),
list(~ as.Date(substr(., 1, 10)))
)
contacts_clean <- dplyr::mutate(
.data = contacts_clean,
datetime_updated_at = as.POSIXct(datetime_updated_at, format = "%Y-%m-%dT%H:%M")
)
contacts_clean <- dplyr::mutate(
.data = contacts_clean,
datetime_created_at = as.POSIXct(datetime_created_at, format = "%Y-%m-%dT%H:%M")
)
# translate responses of categorical vars so easier to read
contacts_clean <- translate_categories(
data = contacts_clean,
language_tokens = language_tokens
)
contacts_clean <- dplyr::rename(
.data = contacts_clean,
outcome = "outcome_id",
relationship_certainty_level = "relationship_certainty_level_id",
relationship_exposure_type = "relationship_exposure_type_id",
relationship_context_of_transmission = "relationship_social_relationship_type_id",
relationship_exposure_frequency = "relationship_exposure_frequency_id",
relationship_exposure_duration = "relationship_exposure_duration_id"
)
contacts_address_history_clean <- dplyr::filter(
.data = contacts_address_history_clean,
addresses_typeid == "Current address"
)
# join in current address from address history, only current place of residence
contacts_clean <- dplyr::left_join(
x = contacts_clean,
y = contacts_address_history_clean,
by = "id"
)
# join in info from vacc block
contacts_clean <- dplyr::mutate(
.data = contacts_clean,
vaccinated = case_when(id %in% contacts_vacc_history_clean$id[contacts_vacc_history_clean$vaccinesreceived_status == "Vaccinated"] ~ TRUE, TRUE ~ FALSE)
)
# force NA ages to appear as NA, not as 0 like sometimes occurs
contacts_clean <- dplyr::mutate(.data = contacts_clean, age_years = as.numeric(age_years))
contacts_clean <- dplyr::mutate(.data = contacts_clean, age_years = na_if(age_years,0))
contacts_clean <- dplyr::mutate(.data = contacts_clean, age_months = as.numeric(age_months))
contacts_clean <- dplyr::mutate(.data = contacts_clean, age_months = na_if(age_months,0))
# standardize age vars into just one var, round by 1 decimal
contacts_clean <- dplyr::mutate(
.data = contacts_clean,
age = case_when(!is.na(age_months) ~ round(age_months / 12, digits = 1),
TRUE ~ age_years))
# WHO age categories updated Sept 2020:
# 0-4, 5-9, 10-14, 15-19, 20-29, 30-39, 40-49, 50-59, 60-64, 65-69, 70-74,
# 75-79, 80+
# these categories below match that of detailed WHO surveillance dash:
# <5, 5-14, 15-24, 25-64, 65+
contacts_clean <- dplyr::mutate(
.data = contacts_clean,
age_class = factor(
case_when(
age <= 4 ~ "<5",
age <= 14 ~ "5-14",
age <= 24 ~ "15-24",
age <= 64 ~ "25-64",
is.finite(age) ~ "65+",
TRUE ~ "unknown"
), levels = c(
"<5",
"5-14",
"15-24",
"25-64",
"65+",
"unknown"
)),
age_class = factor(
age_class,
levels = rev(levels(age_class)))
)
# organize order of vars, only bring in what we need, take away confusing vars
contacts_clean <- dplyr::select(
.data = contacts_clean,
id, # identifier
visual_id, # identifier
classification, # identifier
follow_up_status, # identifier
first_name, # demographics
middle_name, # demographics
last_name, # demographics
gender, # demographics
age, # demographics
age_class, # demographics
occupation, # demographics
pregnancy_status, # demographics
date_of_reporting, # dates
date_of_last_contact, # dates
date_of_burial, # dates
date_of_follow_up_start, # dates
date_of_follow_up_end, # dates
was_case, # epi
risk_level, # epi
risk_reason, # epi
safe_burial, # epi
transfer_refused, # epi
responsible_user_id, # assigned contact tracer
follow_up_team_id, # assigned contact tracer
matches("^admin_.*name$"),
lat, # address
long, # address
address, # address
postal_code, # address
city, # address
telephone, # address
email, # address
vaccinated, # vaccination
outcome, # outcome
date_of_outcome, # outcome
relationship_exposure_type,
relationship_context_of_transmission,
relationship_exposure_duration,
relationship_exposure_frequency,
relationship_certainty_level,
relationship_cluster_id,
location_id = addresses_locationid, # uuid in case need later for joining of whatever sort.
created_by, # record modification
datetime_created_at, # record modification
updated_by, # record modification
datetime_updated_at # record modification
)
#Join in cases that used to be contacts
contacts_clean <- dplyr::bind_rows(contacts_clean, contacts_becoming_cases)
return(contacts_clean)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.