#' Meta-analysis for fixed-effect - two-sample Hodges Lehmann
#' @description Meta-analysis for fixed-effect - two-sample Hodges Lehmann
#' @usage
#' MetaFE2SHL(info,alpha=0.05)
#' @param info summary statistics
#' @param alpha significance level
#' @author Yanda Lang, Joseph McKean
#' @note format for summary statistics (location, scale)
#' @examples
#' study1 <- c(-80.0, 1243.9)
#' study2 <- c(-89.0, 1029.3)
#' info <- rbind(study1,study2)
#' MetaFE2SHL(info,alpha=0.05)
#' @keywords robust
#' @keywords Meta-analysis
#' @import stats Rfit
#' @export
MetaFE2SHL = function(info,alpha=0.05){
# Define h studies split into K pair of studies
K = nrow(info)
# Define median diff, tauhatsq
deltahat = info[,1]; tauhatsq = info[,2]
# Jackknife
# The estimate of delta based on the weighted average of the K summary, deltatilde
deltatilde = sum(deltahat/tauhatsq)/sum(1/tauhatsq)
# Define estimate of delta based on K-1 combined summary statistics, deltatilde_kminus1;
# Define Jackknife replicates for deltatilde, deltatilde_knife
deltatilde_kminus1 = rep(NA,K)
deltatilde_knife = rep(NA,K)
for (i in 1:K) {
deltaknife = deltahat[-i]
tausqknife = tauhatsq[-i]
deltatilde_kminus1[i] = sum(deltaknife/tausqknife)/sum(1/tausqknife)
}
for (i in 1:K) {
deltatilde_knife[i] = K*deltatilde-(K-1)*deltatilde_kminus1[i]
}
# Jackknife variance estimate of deltatilde, B_hat
# mean of Jackknife replicates for deltatilde, mean_deltatilde_knife
mean_deltatilde_knife = sum(deltatilde_knife)/K
B_hat = sum((deltatilde_knife-mean_deltatilde_knife)^2)/(K*(K-1))
# proposed combined CI
lower = qt(alpha/2,K-1)*sqrt(B_hat)+deltatilde
upper = qt(1-alpha/2,K-1)*sqrt(B_hat)+deltatilde
sqrtB = sqrt(B_hat)
combineCI = c(lower, upper)
return(combineCI)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.