#' Meta-analysis for random-effect - two-sample KY
#' @description Meta-analysis for random-effect - two-sample KY
#' @usage
#' MetaREKY2S(info,alpha=0.05)
#' @param info shift estimates, scale estimates, location parameters, and sampel size
#' @param alpha significance level
#' @author Yanda Lang, Joseph McKean
#' @note format for info (location,scale,location parameter1,location parameter2,sample size 1,sample size 2)
#' @examples
#' study1_2SHL <- c(-80.0, 1243.9, 178.0, 247.5, 17, 16)
#' study2_2SHL <- c(-89.0, 1029.3, 167.0, 270.0, 23, 23)
#' info <- rbind(study1_2SHL,study2_2SHL)
#' MetaREKY2S(info,alpha=0.05)
#' @keywords robust
#' @keywords Meta-analysis
#' @import stats Rfit npsmReg2
#' @export
MetaREKY2S = function(info,alpha=0.05){
# Define h studies split into K pair of studies
K = nrow(info)
# Define shift estimate, sample size
deltahat = info[,1]; ssmat = info[,5:6]; mumat = info[,3:4]; tauhatsq = info[,2]
# The estimate of delta based on the weighted average of the K summary, deltatilde
deltatilde = sum(deltahat/tauhatsq)/sum(1/tauhatsq)
# Total variance (between+within)
Qsq = sum((deltahat-deltatilde)^2/tauhatsq)
# Define coefficient c
c = sum(1/tauhatsq)-sum((1/tauhatsq)^2)/sum(1/tauhatsq)
# Calculate variance for between
if (Qsq > K-1){
tauhatsq_between = (Qsq-(K-1))/c
} else {
tauhatsq_between = 0
}
# Kloke estimate random effect variances
fit = khscale2S(deltahat,mumat,ssmat)
# collect hat{sigma}_a^2
tauhatsq_within = fit$sighatk2
# New weight
wstar = 1/(tauhatsq_within+tauhatsq_between)
# Random effect estimate
deltatildeR = sum(wstar*deltahat)/sum(wstar)
# Jackknife
# Define estimate of delta based on K-1 combined summary statistics, deltatilde_kminus1;
# Define Jackknife replicates for deltatilde, deltatilde_knife
deltatildeR_kminus1 = rep(NA,K)
deltatildeR_knife = rep(NA,K)
for (i in 1:K) {
deltaknife = deltahat[-i]
wstarknife = wstar[-i]
deltatildeR_kminus1[i] = sum(deltaknife*wstarknife)/sum(wstarknife)
}
for (i in 1:K) {
deltatildeR_knife[i] = K*deltatildeR-(K-1)*deltatildeR_kminus1[i]
}
# Jackknife variance estimate of deltatildeR, B_hat
# mean of Jackknife replicates for deltatildeR, mean_deltatildeR_knife
mean_deltatildeR_knife = sum(deltatildeR_knife)/K
B_hat = sum((deltatildeR_knife-mean_deltatildeR_knife)^2)/(K*(K-1))
# proposed combined CI
lower = qt(alpha/2,K-1)*sqrt(B_hat)+deltatildeR
upper = qt(1-alpha/2,K-1)*sqrt(B_hat)+deltatildeR
# collect values
sqrtB = sqrt(B_hat)
combineCI = c(lower, upper)
return(combineCI)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.