Description Usage Arguments Value Examples
MR-APSS: a unified approach to Mendelian Randomization accounting for pleiotropy, sample overlap and selection bias using genome wide summary statistics. MA-APSS uses a variantional EM algorithm for estimation of parameters. MR-APSS uses likelihood ratio test for inference.
1 2 3 4 5 6 7 8 9 10 11 12 13 |
MRdat |
data frame at least contain the following varaibles: b.exp b.out se.exp se.out L2. L2:LD score |
exposure |
exposure name |
outcome |
outcome name |
pi0 |
initial value for pi0, default 'NULL' will use the default initialize procedure. |
sigma.sq |
initial value for sigma.sq , default 'NULL'will use the default initialize procedure. |
tau.sq |
initial value for tau.sq , default 'NULL' will use the default initialize procedure. |
Sigma_err |
the error term correlation matrix. default 'diag(2)'. |
Omega |
the background varaince component. default 'matrix(0,2,2)'. |
tol |
tolerence, default '1e-08' |
Threshold |
The selection Threshold for correction of selection bias. If Threshold=1, the model won't correct for selection bias. |
ELBO |
Whether check the evidence lower bound or not, if 'FALSE', check the maximum likelihood instead. default 'FALSE'. |
a list with the following elements:
Input data frame
exposure of interest
outcome of interest
causal effect estimate
standard error
p-value
variance of forground exposure effect
variance of forground outcome effect
The probability of a SNP with forground signal after selection
Posterior estimates of latent varaibles
"MR-APSS"
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.