#'@title A function for implementing MR-APSS.
#'@description MR-APSS: a unified approach to Mendelian Randomization accounting for pleiotropy, sample overlap and selection bias using genome wide summary statistics.
#'MA-APSS uses a variantional EM algorithm for estimation of parameters.
#' MR-APSS uses likelihood ratio test for inference.
#'
#' @param MRdat data frame at least contain the following varaibles: b.exp b.out se.exp se.out L2. L2:LD score
#' @param exposure exposure name
#' @param outcome outcome name
#' @param pi0 initial value for pi0, default `NULL` will use the default initialize procedure.
#' @param sigma.sq initial value for sigma.sq , default `NULL`will use the default initialize procedure.
#' @param tau.sq initial value for tau.sq , default `NULL` will use the default initialize procedure.
#' @param Sigma_err the error term correlation matrix. default `diag(2)`.
#' @param Omega the background varaince component. default `matrix(0,2,2)`.
#' @param tol tolerence, default '1e-08'
#' @param Threshold The selection Threshold for correction of selection bias. If Threshold=1, the model won't correct for selection bias.
#' @param ELBO Whether check the evidence lower bound or not, if `FALSE`, check the maximum likelihood instead. default `FALSE`.
#'
#' @return a list with the following elements:
#' \describe{
#' \item{MRdat: }{Input data frame}
#' \item{exposure: }{exposure of interest}
#' \item{outcome: }{outcome of interest}
#' \item{beta: }{causal effect estimate}
#' \item{beta.se: }{standard error}
#' \item{pval: }{p-value}
#' \item{sigma.sq: }{variance of forground exposure effect}
#' \item{tau.sq: }{variance of forground outcome effect}
#' \item{pi0: }{The probability of a SNP with forground signal after selection}
#' \item{post: }{Posterior estimates of latent varaibles}
#' \item{method: }{"MR-APSS"}
#' }
#'
#' @examples
#' library(MRAPSS)
#' exposure = "BMI"
#' outcome = "T2D"
#' Threshold = 5e-05 # IV selection Threshold
#' data(Sigma_err)
#' data(Omega)
#' data(MRdat)
#' MRres = MRAPSS(MRdat,
#' exposure = "BMI",
#' outcome = "T2D",
#' Sigma_err = Sigma_err,
#' Omega = Omega ,
#' Cor.SelectionBias = T)
#' MRplot(MRres, exposure = "BMI", outcome = "T2D")
#' @export
MRAPSS <- function(MRdat = NULL,
exposure = "exposure",
outcome = "outcome",
pi0 = NULL,
sigma.sq = NULL,
tau.sq = NULL,
Sigma_err = matrix(c(1,0,0,1), 2, 2),
Omega = matrix(0, 2, 2),
Cor.SelectionBias = T,
tol = 1e-08,
ELBO = F){
if(is.null(MRdat)){
cat("No data for MR testing")
return(NULL)
}
if(nrow(MRdat) < 4) stop(" Not enough IVs.")
if(!Cor.SelectionBias){
Threshold = 1
message("Threshold = 1, the model will not correct for selection bias")
}else{
Threshold = unique(MRdat$Threshold)
if(is.null(Threshold)) Threshold = max(MRdat$pval.exp)
}
m = nrow(MRdat)
## stage 1
fit_s1 = MRAPSS_EM_func(MRdat,
fix.beta = T,
beta = 0,
pi0 = pi0,
sigma.sq = sigma.sq ,
tau.sq = tau.sq,
Sigma_err = Sigma_err,
Omega = Omega,
tol = tol,
Threshold = Threshold,
ELBO = ELBO)
# stage 2
fit_s2 = MRAPSS_EM_func(MRdat,
fix.beta = F,
beta = 0,
pi0 = fit_s1$pi0,
sigma.sq = fit_s1$sigma.sq,
tau.sq = fit_s1$tau.sq,
Sigma_err = Sigma_err,
Omega = Omega,
tol = tol,
Threshold = Threshold,
ELBO = ELBO)
LR = 2*(fit_s2$likeli-fit_s1$likeli)
pvalue = pchisq(LR,1,lower.tail = F)
pvalue = formatC(pvalue, format = "e", digits = 4)
beta.se = suppressWarnings(abs(fit_s2$beta/sqrt(LR)))
ratio = drop(mean(fit_s2$post$Pi * fit_s2$sigma.sq * MRdat$L2)/mean(fit_s2$post$Pi * (Omega[1,1]* MRdat$L2 + Sigma_err[1,1] * MRdat$se.exp^2)))
rb = drop(mean(Omega[1,2] * MRdat$L2 + Sigma_err[1,2] * MRdat$se.exp * MRdat$se.out)/
sqrt(mean(Omega[1,1]* MRdat$L2 + Sigma_err[1,1] * MRdat$se.exp^2)*
mean(Omega[2,2]* MRdat$L2 + Sigma_err[2,2] * MRdat$se.out^2)))
rb1 = drop(mean(Omega[1,2] * MRdat$L2)/
sqrt(mean(Omega[1,1]* MRdat$L2 + Sigma_err[1,1] * MRdat$se.exp^2)*
mean(Omega[2,2]* MRdat$L2 + Sigma_err[2,2] * MRdat$se.out^2)))
rb2 = drop(mean(Sigma_err[1,2] * MRdat$se.exp * MRdat$se.out)/
sqrt(mean(Omega[1,1]* MRdat$L2 + Sigma_err[1,1] * MRdat$se.exp^2)*
mean(Omega[2,2]* MRdat$L2 + Sigma_err[2,2] * MRdat$se.out^2)))
cat("***********************************************************\n")
cat("MR test results of ", exposure , " on ", outcome, ": \n")
cat("MR-APSS: beta = ", round(fit_s2$beta,4), "beta.se = ", round(beta.se, 4), "pvalue = ", pvalue, "#SNPs= ", nrow(MRdat), "\n")
cat("Forefround and background signal ratio: ", ratio, "\n")
cat("Background correlation (rb): ", rb, "\n")
#cat("Correlation parameter (rho) due to sample overlap : ", drop(Sigma_err[1,2]), "\n")
#cat("Proportion of effective IVs with foreground signals: ", fit_s2$pi0, "\n")
#cat("Variance component (Omega) for background model = \n")
#print(Omega)
#cat("Variance component (Sigma) for foreground model = \n")
#print(diag(c(fit_s2$sigma.sq, fit_s2$tau.sq)))
cat("***********************************************************\n")
return( list(MRdat = MRdat,
exposure = exposure,
outcome = outcome,
beta = fit_s2$beta,
beta.se = beta.se,
pvalue = pvalue,
tau.sq = fit_s2$tau.sq,
sigma.sq = fit_s2$sigma.sq,
pi0 = fit_s2$pi0,
post = fit_s2$post,
ratio= ratio,
rb = rb,
rb_g = rb1,
rb_c = rb2,
likelihoods = fit_s2$likelis,
Threshold = Threshold,
method = "MR-APSS"))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.