library(MASS)
library(inferenceFitnessLandscape)
library(usethis)
#### Parameters ####
nb_mut <- 115
n <- 2
lambda <- 0.1
maxfitness <- 1
alpha <- 1/2
Q <- 2
theta <- pi / 2
fitness_wt_ref <- 0
fitness_wt_new <- 0
# #### Save reference parameters (temporary) ####
# reference_inferred_parameters <- list(fitness_wt_ref = fitness_wt_ref,
# n_ref = n,
# lambda_ref = lambda,
# maxfitness_ref = maxfitness,
# alpha_ref = alpha,
# Q_ref = Q,
# m_ref = n)
# write.table(x = t(as.matrix(reference_inferred_parameters)),
# file = "data-raw/reference_inferred_parameters.csv",
# col.names = T)
# use_data(reference_inferred_parameters, overwrite = T)
#### Creates wt and mutations effects ####
lambda_I_n <- lambda * diag(n)
mut_effects <- mvrnorm(n = nb_mut, mu = numeric(n), Sigma = lambda_I_n)
pheno_wt <- ftop_fgm_iso(fitness_wt_ref, n, maxfitness, alpha, Q)
mutant <- mut_effects + matrix(pheno_wt, nb_mut, n, byrow = T)
#### environment reference ####
rmut_fit_ref <- ptof_fgm_iso(mutant, maxfitness, alpha, Q)
reference_empirical_fl <- cbind(rbind(numeric(nb_mut),
diag(nrow = nb_mut,
ncol = nb_mut)),
c(fitness_wt_ref, rmut_fit_ref))
write.table(x = reference_empirical_fl,
file = "data-raw/fake_reference_empirical_fl.csv",
row.names = FALSE, col.names = TRUE)
use_data(reference_empirical_fl, overwrite = TRUE)
#### environment new ####
rmut_fit_new <- ptof_fgm_iso(mutant, maxfitness, alpha, Q,
pheno_opt = c((2 * (maxfitness - fitness_wt_new))^(1/2)* cos(theta),
(2 * (maxfitness - fitness_wt_new))^(1/2)* sin(theta)))
new_empirical_fl <- cbind(rbind(numeric(nb_mut),
diag(nrow = nb_mut,
ncol = nb_mut)),
c(fitness_wt_new, rmut_fit_new))
write.table(x = new_empirical_fl,
file= "data-raw/fake_new_empirical_fl.csv",
row.names = FALSE, col.names = TRUE)
use_data(new_empirical_fl, overwrite = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.