Description Usage Arguments Examples
This function computes the next FEC conditional on previous fitted FEC using the SOAP method
1 2 | FECconditional(ylist, tlist, beta_previous, spline_basis, threshold = 1e-04,
gamma = 0)
|
ylist |
a list of observed longtitudinal data; each element in the list is a numeric vector for one subject's observed data |
tlist |
a list of observed time points |
beta_previous |
a list of previously estimated FECs' coefficients |
spline_basis |
the B-spline basis for the fitted FEC |
gamma |
a positive number, the smoothing parameter |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | ## Not run:
library(fda)
data(simulate_data)
observed = simulate_data$observed
timepoints =simulate_data$timepoints
spline.basis=create.bspline.basis(rangeval=c(0,364),nbasis=15,norder=4)
beta0 = rep(observed%>%do.call(c,.)%>%mean,spline.basis$nbasis)
FEC1 = firstFEC(ylist=observed, tlist=timepoints,spline_basis=spline.basis, gamma=1e6,threshold=1e-5)
previous_beta = list()
previous_beta[[1]] = FEC1$beta
FEC2 = FECconditional(ylist=observed, tlist=timepoints,beta_previous=previous_beta,spline_basis=spline.basis, gamma=1e6,threshold=1e-5)
previous_beta[[2]] = FEC2$beta
FEC3 = FECconditional(ylist=observed, tlist=timepoints,beta_previous=previous_beta,spline_basis=spline.basis, gamma=1e6,threshold=1e-5)
previous_beta[[3]] = FEC3$beta
betas = do.call(cbind, previous_beta)
colnames(betas) =c("FEC1","FEC2","FEC3")
fecs = fd(betas, spline.basis)
library(ggplot2)
fdagg(fecs)
predict_y = predict_SOAP(previous_beta,ylist=observed, tlist=timepoints, spline_basis=spline.basis,nminus=2)
i=6
plot(predict_y$predict[i],ylim=range(observed[[i]]))
lines(simulate_data$yfds[i])
points(x=timepoints[[i]],y=observed[[i]])
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.