# source("bisect.R")
estforboot_psQTE <- function(data, indices, p, model.ps, ps = NULL, lp.ps = NULL){
data1 <- data[indices, ]
dim2 <- dim(data1)[2]
Y <- data1[, 1]
A <- data1[, 2]
Kiw.ps <- data1[, 3]
Yiw.ps <- data1[, 4:5]
X <- data1[, 6:dim2]
loc.1 <- which(A == 1)
loc.0 <- which(A == 0)
# if propensity score model is given, then fit the model using bootstrap data
# especailly when linear predictors are given, we should boostrap these predictors too
# if model is not given, directly boostrap the given score
if (model.ps == "logit"){
glm.out <- glm(A ~ X, family = binomial(link = "logit"))
ps <- cbind(1, X) %*% glm.out$coefficients
}else if (model.ps == "probit"){
glm.out <- glm(A ~ X, family = binomial(link = "probit"))
ps <- cbind(1, X) %*% glm.out$coefficients
}else if (model.ps == "linpred"){
if (is.vector(lp.ps)){
lp.ps <- lp.ps[indices]
}else{
lp.ps <- lp.ps[indices, ]
}
glm.out <- glm(A ~ lp.ps, family = binomial)
ps <- cbind(1, lp.ps) %*% glm.out$coefficients
}else {
ps <- ps[indices]
}
lm.y <- Y
lm.x <- cbind(ps, ps ^ 2, ps ^ 3)
lm.out1 <- lm(lm.y[which(A == 1)] ~ lm.x[which(A == 1), ])
mu1.ps <- cbind(1, lm.x) %*% lm.out1$coefficients
sigsqhat1 <- mean((lm.out1$residuals) ^ 2)
lm.out0 <- lm(lm.y[which(A == 0)] ~ lm.x[which(A == 0), ])
mu0.ps <- cbind(1, lm.x) %*% lm.out0$coefficients
sigsqhat0 <- mean((lm.out0$residuals) ^ 2)
mu.ps <- A * mu1.ps + (1 - A) * mu0.ps
# f0 <- function(par) {
# mean((1 - A) * (Kiw.ps + 1) * (Y < par)) - p
# }
# estq0 <- bisect(f0, lo = min(Yiw.ps[, 1]), hi = max(Yiw.ps[, 1]), ytol = 1e-12, itmax = 100)
#
# f1 <- function(par) {
# mean((A) * (Kiw.ps + 1) * (Y < par)) - p
# }
# estq1 <- bisect(f1, lo = min(Yiw.ps[, 2]), hi = max(Yiw.ps[, 2]), ytol = 1e-12, itmax = 100)
#
#
# boot.ps <- estq1 - estq0
#
# return(boot.ps)
f0 <- function(par) {
mean(pnorm((par - mu0.ps) / sqrt(sigsqhat0)) - p) +
mean((1 - A) * (Kiw.ps + 1) * ((Y < par) - pnorm((par - mu0.ps) / sqrt(sigsqhat0))))
}
bootq0 <- bisect(f0, lo = min(Yiw.ps[, 1]), hi = max(Yiw.ps[, 1]), ytol = 1e-12, itmax = 100)
f1 <- function(par) {
mean(pnorm((par - mu1.ps) / sqrt(sigsqhat1)) - p) +
mean((A) * (Kiw.ps + 1) * ((Y < par) - pnorm((par - mu1.ps) / sqrt(sigsqhat1))))
}
bootq1 <- bisect(f1, lo = min(Yiw.ps[, 2]), hi = max(Yiw.ps[, 2]), ytol = 1e-12, itmax = 100)
return(bootq1 - bootq0)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.