## ----setup, include = FALSE----------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ------------------------------------------------------------------------
library(lubridate)
library(forecast)
library(rstatix)
## ------------------------------------------------------------------------
##Change the year to select the year
splitbyyear <- function(df, year = "2019"){
df[lubridate::year(df$Date) == year,]
}
mets2019 <- splitbyyear(RMHF::read_individual_data(fn = "mets.csv"), "2019")
mets2020 <- splitbyyear(RMHF::read_individual_data(fn = "mets.csv"), "2020")
##Order by date.
mets2019 <- mets2019[order(mets2019$Date),]
mets2020 <- mets2020[order(mets2020$Date),]
volume2019 <- splitbyyear(RMHF::read_individual_data(fn = "volume.csv"), "2019")
volume2020 <- splitbyyear(RMHF::read_individual_data(fn = "volume.csv"), "2020")
##Order by date.
volume2019 <- volume2019[order(volume2019$Date),]
volume2020 <- volume2020[order(volume2020$Date),]
## ------------------------------------------------------------------------
##Should do the heavy lifting for us.
aggregate_date <- function(date, df, colselect = "Mets"){
dfdate <- df[df$Date == date, colselect]
return(mean(dfdate))
}
##Vectorized, gives data at the daily level.
meanmets2020 <- sapply(unique(mets2020$Date), aggregate_date, df = mets2020)
meanmets2019 <- sapply(unique(mets2019$Date), aggregate_date, df = mets2019)
meanage2020 <- sapply(unique(volume2020$Date), aggregate_date, df = volume2020, colselect = "Age")
meanage2019 <- sapply(unique(volume2019$Date), aggregate_date, df = volume2019, colselect = "Age")
## ------------------------------------------------------------------------
library(forecast)
auto.arima(meanmets2019)
auto.arima(meanmets2020)
auto.arima(meanage2019)
auto.arima(meanage2020)
## ------------------------------------------------------------------------
##Normal stuff, t - test between data in different years.
library(rstatix)
t.test(meanmets2020, meanmets2019[1:length(meanmets2020)], paired = TRUE)
testdf <- data.frame("covidyear" = meanmets2020,
"covid" = c(rep(0,15), rep(1,17)))
anova_test(data = testdf,
formula = covidyear ~ covid)
## ------------------------------------------------------------------------
##Normal stuff, t - test between data in different years.
t.test(meanage2020, meanage2019[1:length(meanage2020)], paired = TRUE)
##Help find the cut point for the intervention.
age2020map <- data.frame("Age" = meanage2020, "Date" = unique(volume2020$Date), stringsAsFactors = FALSE)[order(lubridate::ymd(data.frame("Age" = meanage2020, "Date" = unique(volume2020$Date), stringsAsFactors = FALSE)$Date)),]
age2020map <- age2020map[order(age2020map$Date),]
testdf <- data.frame("covidyear" = meanage2020,
##Hardcoded groups, don't set.
"covid" = c(rep(0,23), rep(1,31)))
anova_test(data = testdf,
formula = covidyear ~ covid)
## ------------------------------------------------------------------------
df <- RMHF::read_group_data()
df2019 <- as.numeric(df[df$Year == "2019",]$"Prescheduled appointments")
df2020 <- as.numeric(df[df$Year == "2020",]$"Prescheduled appointments")
t.test(df2019, df2020, paired = TRUE)
testdf <- data.frame("covidyear" = df2020,
"covid" = c(rep(0,6), rep(1,5)))
anova_test(data = testdf,
formula = covidyear ~ covid)
## ------------------------------------------------------------------------
df <- RMHF::read_group_data()
df2019 <- as.numeric(df[df$Year == "2019",]$"% of patients who were no-shows")
df2020 <- as.numeric(df[df$Year == "2020",]$"% of patients who were no-shows")
t.test(df2019, df2020, paired = TRUE)
testdf <- data.frame("covidyear" = df2020,
"covid" = c(rep(0,6), rep(1,5)))
anova_test(data = testdf,
formula = covidyear ~ covid)
## ------------------------------------------------------------------------
df <- RMHF::read_group_data()
df2019 <- as.numeric(df[df$Year == "2019",]$"% Females")
df2020 <- as.numeric(df[df$Year == "2020",]$"% Females")
t.test(df2019, df2020, paired = TRUE)
testdf <- data.frame("covidyear" = df2020,
"covid" = c(rep(0,6), rep(1,5)))
anova_test(data = testdf,
formula = covidyear ~ covid)
## ------------------------------------------------------------------------
mets2020 <- RMHF::read_group_data()[RMHF::read_group_data()$Year == "2020",]$"Met-minutes"
mets2019 <- RMHF::read_group_data()[RMHF::read_group_data()$Year == "2019",]$"Met-minutes"
att2020 <- RMHF::read_group_data()[RMHF::read_group_data()$Year == "2020",]$"% of patients who were no-shows"
att2019 <- RMHF::read_group_data()[RMHF::read_group_data()$Year == "2019",]$"% of patients who were no-shows"
#The ith element in meanmets is the mean of the mets collected on ith day in that year.
cor(as.numeric(mets2019), as.numeric(att2019))
cor(as.numeric(mets2020), as.numeric(att2020))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.