Description Usage Arguments Value References Examples
Fits a quantile regression model to the provided dataset where the covariates are viewed as time-dependent and the sampling is length-biased. The parameters are obtained by minimizing the Euclidean norm of certain estimating equations. For the standard error estimation, standard multiplier bootstrap method is used.
1 | TVQRLB(dataset, betao, bootstrap_time, qtile)
|
dataset |
The survival data. |
betao |
The initial estimate for the parameter. |
bootstrap_time |
The bootstrapping time for multiplier bootstrap. |
qtile |
The quantile level used to conduct the quantile regression. |
This function returns a list of lists with each list containing four elements:
qtile, the quantile level specified to fit the model
beta_est, the estimated value of parameter
mean_bootstrap, the mean of bootstrap estimates
sd_bootstrap, the standard error of bootstrap estimates
Cai, Z. and Sit, T. (2018+), "Quantile regression model with time-varying covariates under length-biased sampling," Working Paper.
Jin, Z., Lin, D., Wei, L., and Ying, Z. (2003), "Rank-based inference for the accelerated failure time model," Biometrika, 90, 341-353.
1 2 3 4 5 6 | TVQRLB(fixedCP.cen20, c(-1, 0.5, 1.5), 100, 0.5)
TVQRLB(fixedCP.cen40, c(-1, 0.5, 1.5), 100, 0.5)
TVQRLB(fixedCP.cen60, c(-1, 0.5, 1.5), 100, 0.5)
TVQRLB(exponCP.cen20, c(-1, 0.5, 1.5), 100, 0.5)
TVQRLB(exponCP.cen40, c(-1, 0.5, 1.5), 100, 0.5)
TVQRLB(exponCP.cen60, c(-1, 0.5, 1.5), 100, 0.5)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.