Description Usage Arguments Value References Examples
Fits a quantile regression model to the provided dataset where the covariates are viewed as time-dependent and the sampling is length-biased. The parameters are obtained by minimizing the Euclidean norm of certain estimating equations. For the standard error estimation, a more computationally efficient algorithm named "Orthogonal Procrustes" method, based on matrix singular value decomposition, is used.
1 | TVQRLB_OP(dataset, betao, bootstrap_time, qtile, B_size = 10000)
|
dataset |
The survival data. |
betao |
The initial estimate for the parameter. |
bootstrap_time |
The bootstrapping time for estimation of the "meat" matrix V. |
qtile |
The quantile level used to conduct the quantile regression. |
B_size |
The resampling size for the OP method. Default is |
This function returns a list of lists with each list containing three elements:
qtile, the quantile level specified to fit the model
beta_est, the estimated value of parameter
sd_OP, the standard error of parameter estimates
Cai, Z. and Sit, T. (2018+), "Quantile regression model with time-varying covariates under length-biased sampling," Working Paper.
1 2 3 4 5 6 | TVQRLB_OP(fixedCP.cen20, c(-1, 0.5, 1.5), 1000, 0.5, 10000)
TVQRLB_OP(fixedCP.cen40, c(-1, 0.5, 1.5), 1000, 0.5, 10000)
TVQRLB_OP(fixedCP.cen60, c(-1, 0.5, 1.5), 1000, 0.5, 10000)
TVQRLB_OP(exponCP.cen20, c(-1, 0.5, 1.5), 1000, 0.5, 10000)
TVQRLB_OP(exponCP.cen40, c(-1, 0.5, 1.5), 1000, 0.5, 10000)
TVQRLB_OP(exponCP.cen60, c(-1, 0.5, 1.5), 1000, 0.5, 10000)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.