TVQRLB_OP: Quantile Regression Model with Time-Varying Covariates under...

Description Usage Arguments Value References Examples

View source: R/TVQRLB_main.R

Description

Fits a quantile regression model to the provided dataset where the covariates are viewed as time-dependent and the sampling is length-biased. The parameters are obtained by minimizing the Euclidean norm of certain estimating equations. For the standard error estimation, a more computationally efficient algorithm named "Orthogonal Procrustes" method, based on matrix singular value decomposition, is used.

Usage

1
TVQRLB_OP(dataset, betao, bootstrap_time, qtile, B_size = 10000)

Arguments

dataset

The survival data.

betao

The initial estimate for the parameter.

bootstrap_time

The bootstrapping time for estimation of the "meat" matrix V.

qtile

The quantile level used to conduct the quantile regression.

B_size

The resampling size for the OP method. Default is 10000.

Value

This function returns a list of lists with each list containing three elements:

References

Cai, Z. and Sit, T. (2018+), "Quantile regression model with time-varying covariates under length-biased sampling," Working Paper.

Examples

1
2
3
4
5
6
TVQRLB_OP(fixedCP.cen20, c(-1, 0.5, 1.5), 1000, 0.5, 10000)
TVQRLB_OP(fixedCP.cen40, c(-1, 0.5, 1.5), 1000, 0.5, 10000)
TVQRLB_OP(fixedCP.cen60, c(-1, 0.5, 1.5), 1000, 0.5, 10000)
TVQRLB_OP(exponCP.cen20, c(-1, 0.5, 1.5), 1000, 0.5, 10000)
TVQRLB_OP(exponCP.cen40, c(-1, 0.5, 1.5), 1000, 0.5, 10000)
TVQRLB_OP(exponCP.cen60, c(-1, 0.5, 1.5), 1000, 0.5, 10000)

ZexiCAI/TVQRLB documentation built on Dec. 30, 2019, 6:02 p.m.