Description Usage Arguments Details Value Author(s) References See Also Examples
Returns forecasts using Taylor's (2003) Double-Seasonal Holt-Winters method.
1 2 3 |
y |
Either an |
period1 |
Period of the shorter seasonal period. Only used if |
period2 |
Period of the longer seasonal period. Only used if |
h |
Number of periods for forecasting. |
alpha |
Smoothing parameter for the level. If |
beta |
Smoothing parameter for the slope. If |
gamma |
Smoothing parameter for the first seasonal period. If
|
omega |
Smoothing parameter for the second seasonal period. If
|
phi |
Autoregressive parameter. If |
lambda |
Box-Cox transformation parameter. Ignored if |
biasadj |
Use adjusted back-transformed mean for Box-Cox transformations. If TRUE, point forecasts and fitted values are mean forecast. Otherwise, these points can be considered the median of the forecast densities. By default, the value is taken from what was used when fitting the model. |
armethod |
If TRUE, the forecasts are adjusted using an AR(1) model for the errors. |
model |
If it's specified, an existing model is applied to a new data set. |
Taylor's (2003) double-seasonal Holt-Winters method uses additive trend and
multiplicative seasonality, where there are two seasonal components which
are multiplied together. For example, with a series of half-hourly data, one
would set period1=48
for the daily period and period2=336
for
the weekly period. The smoothing parameter notation used here is different
from that in Taylor (2003); instead it matches that used in Hyndman et al
(2008) and that used for the ets
function.
An object of class "forecast
" which is a list that includes the
following elements:
model |
A list containing information about the fitted model |
method |
The name of the forecasting method as a character string |
mean |
Point forecasts as a time series |
x |
The original time series. |
residuals |
Residuals from the fitted model. That is x minus fitted values. |
fitted |
Fitted values (one-step forecasts) |
The function summary
is used to obtain and print a summary of the
results, while the function plot
produces a plot of the forecasts.
The generic accessor functions fitted.values
and residuals
extract useful features of the value returned by dshw
.
Rob J Hyndman
Taylor, J.W. (2003) Short-term electricity demand forecasting using double seasonal exponential smoothing. Journal of the Operational Research Society, 54, 799-805.
Hyndman, R.J., Koehler, A.B., Ord, J.K., and Snyder, R.D. (2008) Forecasting with exponential smoothing: the state space approach, Springer-Verlag. http://www.exponentialsmoothing.net.
1 2 3 4 5 6 7 8 9 10 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.