Description Usage Arguments Value See Also Examples
uhcdiffdensplot
plots an alternative UHC plot with a simulation
envelope for f^U(z) - \hat{f}^u(z)
1 | uhcdiffdensplot(densdat, densrand, xl = NULL)
|
densdat |
The kernel density estimates of observed points in the test data set |
densrand |
he kernel density estimates for the habitat covariate at the predicted test data points (across M predicted data sets) |
xl |
The x-axis limits (can be user supplied) |
A plot with the mean (black line) and upper and lower bounds of a 95 between the predicted density estimates and the density estimates for the presence locations.
Full archive of the data and code necessary to replicate the manuscript at http://doi.org/10.13020/D6T590.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | # Simulate training data for the non-linear example
nonlinear.train <- uhcdatasimulator(nused = 100,
navail = 10000,
betas = c(2,-1),
ntemp = 1000000,
example = "non-linear")
# Simulate test data for the non-linear example
nonlinear.test <- uhcdatasimulator(nused = 100,
navail = 10000,
betas = c(2,-1),
ntemp = 1000000,
example = "non-linear")
# Fit GLM with quadratic relationship
train.correct <- glm(y~temp + I(temp^2),
family = binomial,
data = nonlinear.train)
# Fit GLM with linear (misspecified) relationship
train.misspec <- glm(y~temp,
family = binomial,
data = nonlinear.train)
# Simulate data for quadratic model
xhat.correct <- uhcsim(nsims = 1000,
nused_test = 100,
xmat = model.matrix(y~temp + I(temp^2), data = nonlinear.test)[,-1],
fit_rsf = train.correct,
z = as.matrix(nonlinear.test[,"temp"]))
# Simulate data for linear (misspecified) model
xhat.misspec <- uhcsim(nsims = 1000,
nused_test = 100,
xmat = as.matrix(model.matrix(y~temp, data = nonlinear.test)[,2]),
fit_rsf = train.misspec,
z = as.matrix(nonlinear.test[,"temp"]))
# Get density estimates for quadratic model
denshats.correct <- uhcdenscalc(rand_sims = xhat.correct[,,1],
dat = subset(nonlinear.test, y==1, select="temp"),
avail = subset(nonlinear.test, y==0, select="temp"))
# Get density estimates for linear (misspecified) model
denshats.misspec <- uhcdenscalc(rand_sims = xhat.misspec[,,1],
dat = subset(nonlinear.test, y==1, select="temp"),
avail = subset(nonlinear.test, y==0, select="temp"))
# Create an alternate UHC plot for the quadratic model
uhcdiffdensplot(densdat = denshats.correct$densdat,
densrand = denshats.correct$densrand)
# Create an alternate UHC plot for the linear (misspecified) model
uhcdiffdensplot(densdat = denshats.misspec$densdat,
densrand = denshats.misspec$densrand)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.