Description Usage Arguments Value Examples
View source: R/method_colwiseinverse.R
Find a feasible solution for a set of linear constraints
1 | find_feasible(B, col, gamma, m0 = rep(0, ncol(B)), max_it = 10000, tol = 1e-14)
|
B |
Matrix coding for a set of linear constraints |
col |
The column number. |
gamma |
Numeric. Non-negative |
m0 |
Startup column. |
max_it |
Integer. Maximum number of iterations. |
tol |
Tolerance allowed for the constraints (mostly used to avoid floating point errors) |
A feasible point
1 2 3 4 5 6 7 8 | B <- diag(1, 3)
find_feasible(B, 1, 0) ## c(1, 0, 0)
find_feasible(B, 1, 0.5) ## c(0.5, 0, 0)
B <- matrix(c(1, 1, 0, 0), 2)
## Not run:
find_feasible(B, 1, gamma = 0.4) ## No solution for gamma lower than 0.5
## End(Not run)
find_feasible(B, 1, gamma = 0.6) ## Plenty of solutions for gamma higher than 0.5
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.