#' Lower bound for univariate Gaussian
#' @param X NxD matrix data
#' @param model Model parameters
#' @param prior Model parameters
#' @return Value of lower bound
#' @export
boundUniGauss = function(X, model, prior){
alpha0 = prior$alpha
beta0 = prior$beta
v0 = prior$v
m0 = prior$m
W0 = prior$W
alpha = model$alpha
beta = model$beta
v = model$v
m = model$m
W = model$W
Resp = model$Resp
logResp = model$logResp
N = length(X)
D = 1
K = dim(Resp)[2]
Nk = colSums(Resp)
logpi = digamma(alpha) - digamma(sum(alpha))
Epz = sum(Resp%*%logpi)
# Resp[which(Resp<.Machine$double.xmin)] = .Machine$double.xmin # TO DO controllare che questo non alteri i risultati
Eqz = sum(Resp*logResp) # (10.75) univariate
logCalpha0 = lgamma(K*alpha0)-K*lgamma(alpha0)
Eppi = logCalpha0 + sum((alpha0-1)*logpi)# (10.73)
logCalpha = lgamma(sum(alpha))-sum(lgamma(alpha))
Eqpi = logCalpha + sum((alpha-1)*logpi)# (10.76)
EpX = EpMuLambda = EpMuLambda2 = EqMuLambda <- 0
log_Lambda <- rep(0,K)
for(k in 1:K){
log_Lambda[k] <- digamma(0.5*v[k]) - log(0.5/W[k])
EpX <- EpX + sum(Resp[,k] * (log_Lambda[k] - D/beta[k] -
v[k]*W[k]*(X - m[k])^2 - D*log(2*pi)))
# (10.74)
EpMuLambda <- EpMuLambda + D*log(beta0/(2*pi)) + log_Lambda[k] -
(D*beta0)/beta[k] - beta0*v[k]*((m[k] - m0)^2) * W[k]
EpMuLambda2 <- EpMuLambda2 + v[k] * W[k] / W0
# (10.77)
EqMuLambda <- EqMuLambda + 0.5*D*log(beta[k]/(2*pi)) + logUniB(W[k], v[k]) +
0.5*(v[k] - 1)*log_Lambda[k] - 0.5*D*(v[k]+1)
}
EpMuLambda <- 0.5*EpMuLambda + K*D*(logUniB(W0, v0)) + 0.5*(v0 - D - 1)*sum(log_Lambda) - 0.5*EpMuLambda2 # 10.74
EpX <- 0.5 * EpX # (10.71)
L = Epz - Eqz + Eppi - Eqpi + EpMuLambda - EqMuLambda + EpX
if(!is.finite(L)) stop("Lower bound is not finite")
L
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.