R/find_mag.R

Defines functions find_mag

Documented in find_mag

#' Find the multiplicative distance of a specified alternative from
#' the alternative in the same direction that obtains a power of 80\%.
#'
#' @param one_obs A single observed value from the limiting distribution.
#' @param dir The shift by which the single observation will moved.  Generally
#' the estimated parameter.
#' @param cutoff The cutoff value of the normed limiting distribution. The
#' estimated parameters which will be the mean of the multiplier bootstrap
#' sample.
#' @param nrm_idx index of the potential norms to be used.
#' @param nrm_type specifies the type of norm to be used.
#' @return The magnitude by which the shift must be multiplied to surpass the
#' cutoff for the given observation.
#'
#' @export

find_mag <- function(one_obs, dir, cutoff, nrm_idx, nrm_type) {
  if (as.numeric(nrm_idx) %% 2 == 0 && nrm_type == "lp") {
    lp <- as.numeric(nrm_idx)
    n_covs <- length(one_obs)
    poly <- rep(NA, lp + 1)
    dir_mat <- matrix(NA, nrow = lp + 1, ncol = n_covs)
    dir_mat[1, ] <- rep(1, n_covs)
    for (i in 2:(lp + 1)) dir_mat[i, ] <- dir_mat[i - 1, ] * dir
    for (k_idx in 0:lp) {
      poly[k_idx + 1] <- choose(lp, k_idx) *
        sum(dir_mat[k_idx + 1, ] * (one_obs ** (lp - k_idx)))
    }
    poly[1] <- poly[1] - cutoff ** lp
    all_rts <- polyroot(poly)
    pos_root <- which(Re(all_rts) > 0)
    apr <- all_rts[pos_root]
    real_root <- which(abs(Im(apr)) < 0.00001)
    if (length(real_root) != 1) return(-1) else return(Re(apr[real_root]))
  } else {
    obj_func <- function(c) l_p_norm(x = one_obs + c * dir,
                                     p = nrm_idx, type = nrm_type) - cutoff
    ul <- 2
    while (obj_func(ul) <= 0) {
      ul <- ul * 2
      if (abs(ul) >= 1000) stop("Cant find upper limit")
    }
    if (obj_func(0) >= 0) {
      return(-1)
    }else{
      return(stats::uniroot(f = obj_func, lower = 0, upper = ul)$root)
    }
  }
}
adam-s-elder/amar documentation built on Feb. 5, 2022, 7:10 a.m.