regress,GRaster,missing-method | R Documentation |
This function performs a regression on each set of cells in a multi-layered GRaster
. The output is a GRaster
with the intercept, slope, r^2 value, and Student's t value. The regression formula is as y ~ 1 + x
, where x
is the layer number of each layer (e.g., 1 for the first or top layer in the input GRaster
, 2 for the second or second-to-top layer, etc.). Note that this is restricted version of the functionality in terra::regress()
.
## S4 method for signature 'GRaster,missing'
regress(y, x, na.rm = FALSE)
y |
A multi-layer |
x |
Ignored. |
na.rm |
Logical: If |
A multi-layer GRaster
.
terra::regress()
if (grassStarted()) {
# Setup
library(sf)
library(terra)
# Example data
madChelsa <- fastData("madChelsa")
# Convert a SpatRaster to a GRaster
chelsa <- fast(madChelsa)
chelsa # 4 layers
# Central tendency
mean(chelsa)
mmode(chelsa)
median(chelsa)
# Statistics
nunique(chelsa)
sum(chelsa)
count(chelsa)
min(chelsa)
max(chelsa)
range(chelsa)
skewness(chelsa)
kurtosis(chelsa)
stdev(chelsa)
stdev(chelsa, pop = FALSE)
var(chelsa)
varpop(chelsa)
# Which layers have maximum/minimum?
which.min(chelsa)
which.max(chelsa)
# Regression
# Note the intercept is different for fasterRaster::regress().
regress(chelsa)
regress(madChelsa, 1:nlyr(madChelsa))
# Note: To get quantiles for each layer, use
# global(x, "quantile", probs = 0.2).
quantile(chelsa, 0.1)
# NAs
madForest2000 <- fastData("madForest2000")
forest2000 <- fast(madForest2000)
forest2000 <- project(forest2000, chelsa, method = "near")
chelsaForest <- c(chelsa, forest2000)
nas <- anyNA(chelsaForest)
plot(nas)
allNas <- allNA(chelsaForest)
plot(allNas)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.