tests/test.R

options(stringsAsFactors = FALSE)

df <- read.csv("data-raw/gvhd_data.csv")

devtools::load_all()

set.seed(12131231)


mod_cov1 <- spec_model(platnorm ~ all + cmv + male + age + agecurs1 +
                         agecurs2 + gvhdm1 + daysgvhd + daysnorelapse + wait,
                    family = "binomial",
                    type = "covriate",
                    order = 1,
                    subset = platnormm1 == 0)

mod_cov2 <- spec_model(relapse ~ all + cmv + male + age + agecurs1 + agecurs2 +
                         gvhdm1 +  daysgvhd + platnormm1 + daysnoplatnorm + day +
                         daysq + wait,
                       family = "binomial",
                       type = "covriate",
                       order = 2,
                       subset = relapsem1 == 0)

mod_exp <- spec_model(gvhd ~ all + cmv + male + age + agecurs1 + agecurs2 +
                        platnormm1 + daysnoplatnorm + relapsem1 + daysnorelapse
                      + day + daysq + wait,
                      subset = gvhdm1 == 0,
                      family = "binomial",
                      type = "exposure",
                      order = 3)

mod_cens <- spec_model(censlost ~ all + cmv + male + age + agesq + daysgvhd +
                         daysnoplatnorm + daysnorelapse + day + daysq +
                         daycu + wait,
                       family = "binomial",
                       type = "censor",
                       order = 4)

mod_out <- spec_model(d ~ gvhd + cmv + male + age  + agesq + day + daysq +
                      daycu + platnorm + daysnoplatnorm + relapse +
                      daysnorelapse + wait + all + day:gvhd +
                      daysq:gvhd + daycu:gvhd,
                    family = "binomial",
                    type = "outcome",
                    order = 5)

init_recode <- c("relapse=0", "gvhd=0",
                 "platnorm=0", "gvhdm1=0", "relapsem1=0", "platnormm1=0",
                 "daysnorelapse=0", "daysnoplatnorm=0", "daysnogvhd=0",
                 "daysrelapse=0", "daysplatnorm=0", "daysgvhd=0")
in_recode <- c("daysq = day^2", "daycu = day^3")
out_recode <- c('platnorm = ifelse(platnormm1 == 1, 1, platnorm)',
                'daysnoplatnorm = ifelse(platnorm == 0, daysnoplatnorm + 1, daysnoplatnorm)',
                'daysplatnorm = ifelse(platnorm == 0, daysplatnorm, daysplatnorm + 1)',
                'relapse = ifelse(relapsem1 == 1, 1, relapse)',
                'daysnorelapse = ifelse(relapse == 0, daysnorelapse + 1, daysnorelapse)',
                'daysrelapse = ifelse(relapse == 0, daysrelapse, daysrelapse + 1)',
                'platnormm1 = platnorm', 'relapsem1 = relapse', 'gvhdm1 = gvhd')

# debug(Gformula)
# debug(monte_g)
# debug(monte_sim)
res_gform <- Gformula(df,
                      id.var = "id",
                      base.vars = c("age", "agesq", "agecurs1", "agecurs2", "male",
                                    "cmv", "all", "wait"),
                      exposure = "gvhd",
                      outcome = "d",
                      time.var = "day",
                      intervention = list(natural = NULL,
                                          always  = 1,
                                          never   = 0),
                      models = list(mod_exp, mod_cov1, mod_cov2, mod_cens, mod_out),
                      init.recode = init_recode,
                      in.recode = in_recode,
                      out.recode = out_recode,
                      mc.sample = 13700)


library(survminer)
library(survival)
library(tidyverse)
base_df <- df %>%
  group_by(id) %>%
  summarise(day = max(day),
            d = max(d)) %>%
  mutate(group = "Observed")

out_dat <- res_gform$gform.data$natural %>%
  select(id, day, d) %>%
  mutate(group = "Natural")

res_dat <- rbind.data.frame(base_df, out_dat)

fit <- survfit(Surv(day, d) ~ group,
               data = res_dat)

ggsurvplot(fit)


# Compare
dfm <- res_gform$gform.data
dfm$natural <- NULL
dfm <- bind_rows(dfm)

res_cox <- coxph(Surv(day, d) ~ gvhd, data = dfm, ties = "efron")
summary(res_cox)
adayim/causalMed documentation built on June 2, 2020, 4:11 p.m.