#' modelSVM Function
#'
#' This function allows you to check if a news article is authentic or fake.
#' It was trained using the SVM Algorithms from the package RTextTools-e1071, and the the Kaggle Fake News Dataset
#' @param fileName
#' @export
#' @examples
#' modelSVM(FileName)
#' @import RTextTools
#' @import tm
#' @import text2vec
#' @import tools
#' @import SnowballC
#' @importFrom readr read_file
# library(RTextTools)
# library(tm)
# library(text2vec)
# library(tools)
# library(SnowballC)
# library(readr)
#
#
# path_models = '/home/adelo/1-system/desktop/it_cct/5-Applied_Technology_Group_Project/gofaaaz-machine_learning/r_prog/1codes/0models/0finalModels'
# setwd(path_models)
#
# models_GLMNET_MAXENT_SVM = readRDS('kfn1-kfn2-dataset3_100_weighting_FALSE_removeSparseTerms_0_90_GLMNET_MAXENT_SVM_models.rds')
# dtm_train_GLMNET_MAXENT_SVM = readRDS('kfn1-kfn2-dataset3_100_weighting_FALSE_removeSparseTerms_0_90_dtm_train.rds')
modelSVM <- function(fileName){
ResortDtm <- function(working.dtm) {
working.df <- data.frame(i = working.dtm$i, j = working.dtm$j, v = working.dtm$v) # create a data frame comprised of i,j,v values from the sparse matrix passed in.
working.df <- working.df[order(working.df$i, working.df$j), ] # sort the data frame first by i, then by j.
working.dtm$i <- working.df$i # reassign the sparse matrix' i values with the i values from the sorted data frame.
working.dtm$j <- working.df$j # ditto for j values.
working.dtm$v <- working.df$v # ditto for v values.
return(working.dtm) # pass back the (now sorted) data frame.
}
if(class(fileName) == "character" && length(fileName) == 1) {
if(file.exists(fileName)){
if(file_ext(fileName) == "txt"){
data <- data.frame(read_file(fileName))
names(data)[1] <- "text"
}else if(file_ext(fileName) == "csv"){
data <- data.frame(readLines(fileName))
names(data)[1] <- "text"
}else{
print('The extension of the file entered is not supported. Make sure the file you are trying to read have a supported extension (.txt or .csv)')
}
} else{
print("Warning!! The parameter you have entered it is NOT a valid path for a text file. The function is analysing the text contained in the «character» object you have entered as parameter.")
data <- data.frame(fileName)
names(data)[1] <- "text"
}
}else{
print("Warning!! The parameter you have entered it is NOT a valid path for a file. The function is analysing the text contained in the object you have entered as parameter.")
data <- data.frame(fileName)
names(data)[1] <- "text"
}
# Text processing ----
text <- data$text
text <- tolower(text)
text <- removePunctuation(text)
text <- removeNumbers(text)
text <- removeWords(text, stopwords("en")) # stopwords
text <- stripWhitespace(text) # Remove blank space
text <- SnowballC::wordStem(text, language = "english") # Stemming Words
onlyOne = FALSE
if (length(text) == 1){
onlyOne = TRUE
text = c(text,"La funcion classify_models from RTextTools no funciona cuando length es 1, estamos entonces agregando un segundo valor")
}
dtm <- create_matrix(text,
language = "english",
# weighting = function(x) weightTfIdf(x, normalize = F),
toLower = TRUE, # Converts to lowecase
removeNumbers = TRUE, # Removes numbers
removeStopwords = TRUE, # Removes stop words
removePunctuation = TRUE, # Removes punctuation
stripWhitespace = TRUE, # Remove blank space
removeSparseTerms = 0.90, # Remove all terms in the corpus whose sparsity is greater than 99%
stemWords = TRUE, # Applying stemming(involves trimming words suchs calling, called and calls to call)
originalMatrix = dtm_train_GLMNET_MAXENT_SVM
)
dtm_resorted <- ResortDtm(dtm)
if (length(dtm[["i"]]) > 0){
matrix_container <- create_container(dtm_resorted,
t(integer(length(text))),
trainSize = NULL,
testSize = 1:length(text),
virgin = FALSE
)
# Making predictions
pred_test_GLMNET_MAXENT_SVM <- classify_models(matrix_container, models_GLMNET_MAXENT_SVM)
pred_test_SVM = factor(pred_test_GLMNET_MAXENT_SVM$SVM_LABEL)
}else{
print("Warning!! The length of the DTM is zero")
pred_test_SVM = rep(1, length(text))
}
if (onlyOne == TRUE){
pred_test_SVM = pred_test_SVM[1]
}
pred_test_SVM = as.numeric(as.character(pred_test_SVM))
return(pred_test_SVM)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.