context("Test Predict Polarity Keras")
library(deepSentimentR)
library(dplyr)
library(lubridate)
data("sentiment140_test")
test_data <- data.frame("user" = c("test_user1", "test_user1", "test_user2"),
"date" = c(as_datetime("2009-04-01"), as_datetime("2009-04-05"), as_datetime("2009-04-10")),
"text" = c("A sad tweet and very bad and unhappy",
"A nice happy beautiful tweet",
"Very sunny sky and bright and awesome feeling tweet"),
"polarity" = c(0, 4, 4),
"nouns" = c(4,4,4),
"adjectives" = c(1,1,1),
"prepositions" = c(1,1,1),
"articles" = c(2,2,2),
"pronouns" = c(3,2,2),
"verbs" = c(1,2,4),
"adverbs" = c(1,3,2),
"interjections" = c(0,0,0),
"id" = c(1,2,3),
"query" = c("test", "test", "test"))
test_that("should give valid results for lstm without glove", {
result <- predict_polarity_keras(data = sentiment140_test,
model_load_path = system.file("extdata",
"train_no_glove_lstm.rds",
package = "deepSentimentR",
mustWork = TRUE))
expect_true(! is.null(result$plot))
expect_true(inherits(result$plot, "ggplot"))
expect_true(is.data.frame(result$raw))
expect_true(is.data.frame(result$predictions))
expect_gt(result$accuracy, 0.6)
})
test_that("should give valid results for lstm with glove", {
result <- predict_polarity_keras(data = sentiment140_test,
model_load_path = system.file("extdata",
"train_glove_lstm.rds",
package = "deepSentimentR",
mustWork = TRUE))
expect_true(! is.null(result$plot))
expect_true(inherits(result$plot, "ggplot"))
expect_true(is.data.frame(result$raw))
expect_true(is.data.frame(result$predictions))
expect_gt(result$accuracy, 0.6)
})
test_that("should give valid results for conv_1d without glove", {
result <- predict_polarity_keras(data = sentiment140_test,
model_load_path = system.file("extdata",
"train_no_glove_conv_1d.rds",
package = "deepSentimentR",
mustWork = TRUE))
expect_true(! is.null(result$plot))
expect_true(inherits(result$plot, "ggplot"))
expect_true(is.data.frame(result$raw))
expect_true(is.data.frame(result$predictions))
expect_gt(result$accuracy, 0.6)
})
test_that("should give valid results for conv_1d with glove", {
result <- predict_polarity_keras(data = sentiment140_test,
model_load_path = system.file("extdata",
"train_glove_conv_1d.rds",
package = "deepSentimentR",
mustWork = TRUE))
expect_true(! is.null(result$plot))
expect_true(inherits(result$plot, "ggplot"))
expect_true(is.data.frame(result$raw))
expect_true(is.data.frame(result$predictions))
expect_gt(result$accuracy, 0.6)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.