#' @title K-hat (Cohen's Kappa Coefficient)
#' @name khat
#' @description It estimates the Cohen's Kappa Coefficient for a nominal/categorical
#' predicted-observed dataset.
#' @param data (Optional) argument to call an existing data frame containing the data.
#' @param obs Vector with observed values (character | factor).
#' @param pred Vector with predicted values (character | factor).
#' @param pos_level Integer, for binary cases, indicating the order (1|2) of the level
#' corresponding to the positive. Generally, the positive level is the second (2)
#' since following an alpha-numeric order, the most common pairs are
#' `(Negative | Positive)`, `(0 | 1)`, `(FALSE | TRUE)`. Default : 2.
#' @param tidy Logical operator (TRUE/FALSE) to decide the type of return. TRUE
#' returns a data.frame, FALSE returns a list; Default : FALSE.
#' @param na.rm Logic argument to remove rows with missing values
#' (NA). Default is na.rm = TRUE.
#' @return an object of class `numeric` within a `list` (if tidy = FALSE) or within a
#' `data frame` (if tidy = TRUE).
#' @details The Cohen's Kappa Coefficient is the accuracy normalized by the possibility
#' of agreement by chance. Thus, it is considered a more robust agreement measure than
#' simply the accuracy. The kappa coefficient was originally described for evaluating
#' agreement of classification between different "raters" (inter-rater reliability).
#'
#' It is positively bounded to 1, but it is not negatively bounded.
#' The closer to 1 the better as Kappa assumes its theoretical maximum value of 1
#' (perfect agreement) only when both observed and predicted values are equally
#' distributed across the classes (i.e. identical row and column sums). Thus,
#' the lower the kappa the lower the prediction quality.
#'
#' For the formula and more details, see
#' [online-documentation](https://adriancorrendo.github.io/metrica/articles/available_metrics_classification.html)
#' @references
#' Cohen, J. (1960).
#' A coefficient of agreement for nominal scales.
#' _ Educational and Psychological Measurement 20 (1): 37–46._
#' \doi{10.1177/001316446002000104}
#' @examples
#' \donttest{
#' set.seed(123)
#' # Two-class
#' binomial_case <- data.frame(labels = sample(c("True","False"), 100, replace = TRUE),
#' predictions = sample(c("True","False"), 100, replace = TRUE))
#' # Multi-class
#' multinomial_case <- data.frame(labels = sample(c("Red","Blue", "Green"), 100,
#' replace = TRUE), predictions = sample(c("Red","Blue", "Green"), 100, replace = TRUE))
#'
#' # Get Cohen's Kappa Coefficient estimate for two-class case
#' khat(data = binomial_case, obs = labels, pred = predictions, tidy = TRUE)
#'
#' # Get Cohen's Kappa Coefficient estimate for each class for the multi-class case
#' khat(data = multinomial_case, obs = labels, pred = predictions, tidy = TRUE)
#'
#' # Get Cohen's Kappa Coefficient estimate for the multi-class case at a global level
#' khat(data = multinomial_case, obs = labels, pred = predictions, tidy = TRUE)
#' }
#' @rdname khat
#' @importFrom rlang eval_tidy quo
#' @export
khat <- function(data=NULL, obs, pred,
pos_level = 2,
tidy = FALSE, na.rm = TRUE){
matrix <- rlang::eval_tidy(
data = data,
rlang::quo(table({{pred}}, {{obs}}) ) )
# If binomial
if (nrow(matrix) == 2){
if (pos_level == 1){
TP <- matrix[[1]]
FP <- matrix[[3]]
TN <- matrix[[4]]
FN <- matrix[[2]] }
if (pos_level == 2){
TP <- matrix[[4]]
FP <- matrix[[2]]
TN <- matrix[[1]]
FN <- matrix[[3]] }
khat <- 2*(TP * TN - FP * FN) / ( (TP+FP) * (TN+FP) + (TP+FN) * (TN+FN) )
}
# If multinomial,
if (nrow(matrix) >2) {
expected <- outer(rowSums(matrix), colSums(matrix)) / sum(matrix)
#levels <- nrow(matrix)
off_diag <- matrix(1L, nrow = nrow(matrix), ncol = nrow(matrix))
diag(off_diag) <- 0L
n_off_diag <- sum(off_diag * matrix)
n_random <- sum(off_diag * expected)
khat <- 1 - (n_off_diag / n_random)
}
if (tidy==TRUE){return(as.data.frame(khat)) }
if (tidy==FALSE){ return(khat) }
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.