#' @title Recall | Sensitivity | True Positive Rate | Hit rate
#' @name recall
#' @description \code{recall} estimates the recall (a.k.a. sensitivity, true
#' positive rate -TPR-, or hit rate) for a nominal/categorical predicted-observed dataset.
#' @param data (Optional) argument to call an existing data frame containing the data.
#' @param obs Vector with observed values (character | factor).
#' @param pred Vector with predicted values (character | factor).
#' @param atom Logical operator (TRUE/FALSE) to decide if the estimate is made for
#' each class (atom = TRUE) or at a global level (atom = FALSE); Default : FALSE.
#' When dataset is "binomial" atom does not apply.
#' @param pos_level Integer, for binary cases, indicating the order (1|2) of the level
#' corresponding to the positive. Generally, the positive level is the second (2)
#' since following an alpha-numeric order, the most common pairs are
#' `(Negative | Positive)`, `(0 | 1)`, `(FALSE | TRUE)`. Default : 2.
#' @param tidy Logical operator (TRUE/FALSE) to decide the type of return. TRUE
#' returns a data.frame, FALSE returns a list; Default : FALSE.
#' @param na.rm Logic argument to remove rows with missing values
#' (NA). Default is na.rm = TRUE.
#' @return an object of class `numeric` within a `list` (if tidy = FALSE) or within a
#' `data frame` (if tidy = TRUE).
#' @details The \code{recall} (a.k.a. sensitivity or true positive rate -TPR-) is a
#' non-normalized coefficient that represents the ratio between the correctly
#' predicted cases (true positives -TP-) to the total number of actual observations
#' that belong to a given class (actual positives -P-).
#'
#' For binomial cases, \eqn{recall = \frac{TP}{P} = \frac{TP}{TP + FN} }
#'
#' The \code{recall} metric is bounded between 0 and 1. The closer to 1 the better.
#' Values towards zero indicate low performance. It can be either estimated for
#' each particular class or at a global level.
#'
#' Metrica offers 4 identical alternative functions that do the same job: i) \code{recall},
#' ii) \code{sensitivity}, iii) \code{TPR}, and iv) \code{hitrate}. However, consider
#' when using \code{metrics_summary}, only the \code{recall} alternative is used.
#'
#' The false negative rate (or false alarm, or fall-out) is the complement of the
#' recall, representing the ratio between the number of false negatives (FN)
#' to the actual number of positives (P). The \code{FNR} formula is:
#'
#' \eqn{FNR = 1 - recall = 1 - TPR = \frac{FN}{P}}
#'
#' The \code{fpr} is bounded between 0 and 1. The closer to 0 the better. Low performance
#' is indicated with fpr > 0.5.
#'
#' For the formula and more details, see
#' [online-documentation](https://adriancorrendo.github.io/metrica/articles/available_metrics_classification.html)
#' @references
#' Ting K.M. (2017)
#' Precision and Recall.
#' _In: Sammut C., Webb G.I. (eds) Encyclopedia of Machine Learning and Data Mining._
#' _Springer, Boston, MA._ \doi{10.1007/978-1-4899-7687-1_659}
#'
#' Ting K.M. (2017).
#' Sensitivity.
#' _In: Sammut C., Webb G.I. (eds) Encyclopedia of Machine Learning and Data Mining._
#' _Springer, Boston, MA._ \doi{10.1007/978-1-4899-7687-1_751}
#'
#' Trevethan, R. (2017).
#' _Sensitivity, Specificity, and Predictive Values: Foundations, Pliabilities, and Pitfalls_
#' _ in Research and Practice. Front. Public Health 5:307_ \doi{10.3389/fpubh.2017.00307}
#' @examples
#' \donttest{
#' set.seed(123)
#' # Two-class
#' binomial_case <- data.frame(labels = sample(c("True","False"), 100,
#' replace = TRUE), predictions = sample(c("True","False"), 100, replace = TRUE))
#'
#' # Multi-class
#' multinomial_case <- data.frame(labels = sample(c("Red","Blue", "Green"), 100,
#' replace = TRUE), predictions = sample(c("Red","Blue", "Green"), 100, replace = TRUE))
#'
#' # Get recall estimate for two-class case at global level
#' recall(data = binomial_case, obs = labels, pred = predictions, tidy = TRUE)
#'
#' # Get FNR estimate for two-class case at global level
#' FNR(data = binomial_case, obs = labels, pred = predictions, tidy = TRUE)
#'
#' # Get recall estimate for each class for the multi-class case at global level
#' recall(data = multinomial_case, obs = labels, pred = predictions, tidy = TRUE,
#' atom = FALSE)
#'
#' # Get recall estimate for the multi-class case at a class-level
#' recall(data = multinomial_case, obs = labels, pred = predictions, tidy = TRUE,
#' atom = TRUE)
#' }
#' @importFrom rlang eval_tidy quo
#' @rdname recall
#' @export
#'
recall <- function(data=NULL, obs, pred,
atom = FALSE, pos_level = 2,
tidy = FALSE, na.rm = TRUE){
# Recall
matrix <- rlang::eval_tidy(
data = data,
rlang::quo(table({{pred}}, {{obs}}) ) )
# If binomial, atom arg. doesn't apply
if (nrow(matrix) == 2){
if (pos_level == 1){
TP <- matrix[[1]]
TPFN <- matrix[[1]] + matrix[[2]] }
if (pos_level == 2){
TP <- matrix[[4]]
TPFN <- matrix[[4]] + matrix[[3]] }
recall <- TP/ (TPFN) }
if (nrow(matrix) >2) {
# Calculations
correct <- diag(matrix)
total_actual <- colSums(matrix)
if (atom == FALSE) {
recall <- mean(correct / total_actual) }
# Overall
if (atom == TRUE) {
recall <- correct / total_actual }
}
if (tidy == TRUE) {
return(as.data.frame(recall)) }
if (tidy == FALSE) {
return(list("recall" = recall)) }
}
#' @rdname recall
#' @description \code{TPR} alternative to `recall()`.
#' @export
#'
TPR <- function(data=NULL, obs, pred,
atom = FALSE, pos_level = 2,
tidy = FALSE, na.rm = TRUE){
# True Positive Rate
matrix <- rlang::eval_tidy(
data = data,
rlang::quo(table({{pred}}, {{obs}}) ) )
# If binomial, atom arg. doesn't apply
if (nrow(matrix) == 2){
if (pos_level == 1){
TP <- matrix[[1]]
TPFN <- matrix[[1]] + matrix[[2]] }
if (pos_level == 2){
TP <- matrix[[4]]
TPFN <- matrix[[4]] + matrix[[3]] }
TPR <- TP/ (TPFN) }
if (nrow(matrix) >2) {
# Calculations
correct <- diag(matrix)
total_actual <- colSums(matrix)
if (atom == FALSE) {
TPR <- mean(correct / total_actual) }
# Overall
if (atom == TRUE) {
TPR <- correct / total_actual }
}
if (tidy == TRUE) {
return(as.data.frame(TPR)) }
if (tidy == FALSE) {
return(list("TPR" = TPR)) }
}
#' @rdname recall
#' @description \code{sensitivity} alternative to `recall()`.
#' @export
#'
sensitivity <- function(data=NULL, obs, pred,
atom = FALSE, pos_level = 2,
tidy = FALSE, na.rm = TRUE){
# True Positive Rate
matrix <- rlang::eval_tidy(
data = data,
rlang::quo(table({{pred}}, {{obs}}) ) )
# If binomial, atom arg. doesn't apply
if (nrow(matrix) == 2){
if (pos_level == 1){
TP <- matrix[[1]]
TPFN <- matrix[[1]] + matrix[[2]] }
if (pos_level == 2){
TP <- matrix[[4]]
TPFN <- matrix[[4]] + matrix[[3]] }
sensitivity <- TP/ (TPFN) }
if (nrow(matrix) >2) {
# Calculations
correct <- diag(matrix)
total_actual <- colSums(matrix)
if (atom == FALSE) {
sensitivity <- mean(correct / total_actual) }
# Overall
if (atom == TRUE) {
sensitivity <- correct / total_actual }
}
if (tidy == TRUE) {
return(as.data.frame(sensitivity)) }
if (tidy == FALSE) {
return(list("Sensitivity" = sensitivity)) }
}
#' @rdname recall
#' @description \code{hitrate} alternative to `recall()`.
#' @export
#'
hitrate <- function(data=NULL, obs, pred,
atom = FALSE, pos_level = 2,
tidy = FALSE, na.rm = TRUE){
# True Positive Rate
matrix <- rlang::eval_tidy(
data = data,
rlang::quo(table({{pred}}, {{obs}}) ) )
# If binomial, atom arg. doesn't apply
if (nrow(matrix) == 2){
if (pos_level == 1){
TP <- matrix[[1]]
TPFN <- matrix[[1]] + matrix[[2]] }
if (pos_level == 2){
TP <- matrix[[4]]
TPFN <- matrix[[4]] + matrix[[3]] }
hitrate <- TP/ (TPFN) }
if (nrow(matrix) >2) {
# Calculations
correct <- diag(matrix)
total_actual <- colSums(matrix)
if (atom == FALSE) {
hitrate <- mean(correct / total_actual) }
# Overall
if (atom == TRUE) {
hitrate <- correct / total_actual }
}
if (tidy == TRUE) {
return(as.data.frame(hitrate)) }
if (tidy == FALSE) {
return(list("HitRate" = hitrate)) }
}
#' @rdname recall
#' @description \code{FNR} estimates false negative rate (or false alarm, or fall-out)
#' for a nominal/categorical predicted-observed dataset.
#' @export
#'
FNR <- function(data=NULL, obs, pred,
atom = FALSE, pos_level = 2,
tidy = FALSE, na.rm = TRUE){
# False Negative Rate (FNR)
matrix <- rlang::eval_tidy(
data = data,
rlang::quo(table({{pred}}, {{obs}}) ) )
# If binomial, atom arg. doesn't apply
if (nrow(matrix) == 2){
if (pos_level == 1){
TP <- matrix[[1]]
TPFN <- matrix[[1]] + matrix[[2]] }
if (pos_level == 2){
TP <- matrix[[4]]
TPFN <- matrix[[4]] + matrix[[3]] }
recall <- TP/ (TPFN) }
if (nrow(matrix) >2) {
# Calculations
correct <- diag(matrix)
total_actual <- colSums(matrix)
if (atom == FALSE) {
recall <- mean(correct / total_actual) }
# Overall
if (atom == TRUE) {
recall <- correct / total_actual }
}
# Formula
FNR <- 1 - recall
if (tidy==TRUE){ return(as.data.frame(FNR)) }
if (tidy==FALSE){ return(list("FNR" = FNR)) }
}
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.