context("Testing")
test_that("Succes", {
library(NINA)
g1_EN = EN_model(env_data, occ_data1, cluster = "env", n.clus = 5)
g2_EN = EN_model(env_data, occ_data2, cluster = g1_EN$clus)
g2_BC <- BC_model(g2_EN, g1_EN, A.matrix = int_matrix, C.matrix = NULL, method = "densities", type = "region")
eval = models_evaluation(g1_EN$pred.dis, g1_EN$obs, env_data, plot = F)
print(eval)
plot(eval)
expect_equal(class(eval), c("NINA", "eval"))
expect_equal(nrow(eval$tab), length(levels(occ_data1$species)))
expect_equal(dim(eval$threshold), c(length(levels(occ_data1$species)), 2))
expect_equal(unique(eval$confusion$test), c("predicted", "random"))
expect_equal(rowSums(eval$cases[,2:3]), rowSums(eval$n))
eval = models_evaluation(g2_BC, plot = T, best.th = "similarity")
expect_equal(class(eval), c("NINA", "eval"))
expect_equal(nrow(eval$tab), length(levels(occ_data2$species)))
expect_equal(dim(eval$threshold), c(length(levels(occ_data2$species)), 2))
expect_equal(unique(eval$confusion$test), c("predicted", "random"))
expect_equal(rowSums(eval$cases[,2:3]), rowSums(eval$n))
Pseudo_abs <- sample_pseudoabsences(occ_data1, env_data, spsNames = NULL, plot = T)
expect_equal(class(Pseudo_abs), "list")
expect_equal(nrow(Pseudo_abs$tab), length(levels(occ_data2$species)))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.