plotAllNetworks | R Documentation |
This function highlighting ranked paths over different network representations, metabolic, reaction and gene networks. The functions finds equivalent paths across different networks and marks them.
plotAllNetworks(
paths,
metabolic.net = NULL,
reaction.net = NULL,
gene.net = NULL,
path.clusters = NULL,
plot.clusters = TRUE,
col.palette = palette(),
layout = layout.auto,
...
)
paths |
The result of |
metabolic.net |
A bipartite metabolic network. |
reaction.net |
A reaction network, resulting from |
gene.net |
A gene network, resulting from |
path.clusters |
The result from |
plot.clusters |
Whether to plot clustering information, as generated by |
col.palette |
A color palette, or a palette generating function (ex: col.palette=rainbow ). |
layout |
Either a graph layout function, or a two-column matrix specifiying vertex coordinates. |
... |
Additional arguments passed to |
Highlights the path list over all provided networks.
Ahmed Mohamed
Other Plotting methods:
colorVertexByAttr()
,
layoutVertexByAttr()
,
plotClassifierROC()
,
plotClusterMatrix()
,
plotCytoscapeGML()
,
plotNetwork()
,
plotPathClassifier()
,
plotPaths()
## Prepare a weighted reaction network.
## Conver a metabolic network to a reaction network.
data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)
## Assign edge weights based on Affymetrix attributes and microarray dataset.
# Calculate Pearson's correlation.
data(ex_microarray) # Part of ALL dataset.
rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
weight.method = "cor", use.attr="miriam.uniprot",
y=factor(colnames(ex_microarray)), bootstrap = FALSE)
## Get ranked paths using probabilistic shortest paths.
ranked.p <- pathRanker(rgraph, method="prob.shortest.path",
K=20, minPathSize=6)
plotAllNetworks(ranked.p, metabolic.net = ex_sbml, reaction.net = rgraph,
vertex.label = "", vertex.size = 4)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.