Description Usage Arguments Value Author(s) See Also Examples
Predicts new paths given a pathClassifier model.
1 | predictPathClassifier(mix, newdata)
|
mix |
The result from |
newdata |
A data.frame containing the new paths to be classified. |
A list with the following elements.
h |
The posterior probabilities for each HME3M component. |
posterior.probs |
The posterior probabilities for HME3M model to classify the response. |
label |
A vector indicating the HME3M cluster membership. |
component |
The HME3M component membership for each pathway. |
path.probabilities |
The 3M path probabilities. |
plr.probabilities |
The PLR predictions for each component. |
Timothy Hancock and Ichigaku Takigawa
Other Path clustering & classification methods: pathClassifier
,
pathCluster
, pathsToBinary
,
plotClassifierROC
,
plotClusterMatrix
,
plotPathClassifier
,
plotPathCluster
,
predictPathCluster
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ## Prepare a weighted reaction network.
## Conver a metabolic network to a reaction network.
data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)
## Assign edge weights based on Affymetrix attributes and microarray dataset.
# Calculate Pearson's correlation.
data(ex_microarray) # Part of ALL dataset.
rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
weight.method = "cor", use.attr="miriam.uniprot",
y=factor(colnames(ex_microarray)), bootstrap = FALSE)
## Get ranked paths using probabilistic shortest paths.
ranked.p <- pathRanker(rgraph, method="prob.shortest.path",
K=20, minPathSize=6)
## Convert paths to binary matrix.
ybinpaths <- pathsToBinary(ranked.p)
p.class <- pathClassifier(ybinpaths, target.class = "BCR/ABL", M = 3)
## Just an example of how to predict cluster membership
pclass.pred <- predictPathCluster(p.class, ybinpaths$paths)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.