Description Usage Arguments Value Author(s) See Also Examples
Plots the structure of all path clusters
1 2 3 4 5 6 | plotClusterMatrix(ybinpaths, clusters, col = rainbow(clusters$params$M),
grid = TRUE)
plotClusterProbs(clusters, col = rainbow(clusters$params$M))
plotClusters(ybinpaths, clusters, col, ...)
|
ybinpaths |
The training paths computed by |
clusters |
The pathway cluster model trained by |
col |
Colors for each path cluster. |
grid |
A logical, whether to add a |
... |
Extra paramaters passed to |
plotClusterMatrix
plots an image of all paths the training dataset. Rows are the paths and columns
are the genes (features) included within each path. Paths are colored according to cluster membership.
plotClusterProbs
The training set posterior probabilities for each path belonging to a 3M component.
plotClusters
: combines the two plots produced by plotClusterProbs
and plotClusterMatrix
.
Ahmed Mohamed
Other Path clustering & classification methods: pathClassifier
,
pathCluster
, pathsToBinary
,
plotClassifierROC
,
plotPathClassifier
,
plotPathCluster
,
predictPathClassifier
,
predictPathCluster
Other Plotting methods: colorVertexByAttr
,
layoutVertexByAttr
,
plotAllNetworks
,
plotClassifierROC
,
plotCytoscapeGML
,
plotNetwork
,
plotPathClassifier
, plotPaths
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | ## Prepare a weighted reaction network.
## Conver a metabolic network to a reaction network.
data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)
## Assign edge weights based on Affymetrix attributes and microarray dataset.
# Calculate Pearson's correlation.
data(ex_microarray) # Part of ALL dataset.
rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
weight.method = "cor", use.attr="miriam.uniprot",
y=factor(colnames(ex_microarray)), bootstrap = FALSE)
## Get ranked paths using probabilistic shortest paths.
ranked.p <- pathRanker(rgraph, method="prob.shortest.path",
K=20, minPathSize=8)
## Convert paths to binary matrix.
ybinpaths <- pathsToBinary(ranked.p)
p.cluster <- pathCluster(ybinpaths, M=2)
plotClusters(ybinpaths, p.cluster, col=c("red", "blue") )
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.