#' Get control parameters for a TEfit model
#'
#' \code{\link{TEfit}} internal
#'
#' @param quietErrs logical. Should errors be printed to the Console?
#' @param suppressWarnings logical. Should warnings be printed to the Console?
#' @param y_lim Numeric vector of length 2. Lower and upper bounds of permitted predicted values.
#' @param rate_lim Numeric vector of length 2. Lower and upper bounds of permitted rate values [log time constants].
#' @param shape_lim Numeric vector of length 2. Lower and upper bounds of permitted shape parameter values (i.e., for Weibull).
#' @param expBase For change functions with an exponential component, what should the base of the exponent be?
#' @param rateBase What should the base of the rate exponent be?
#' @param pFix Named numeric vector allowing specific parameters to be fixed to a constant (i.e., not estimated)
#' @param penalizeMean Logical. Should the time-evolving model be penalized if the mean of the time-evolving predicted values diverges from the mean of the null [non-time-evolving] predicted values?
#' @param penalizeRate Logical. Should the time-evolving model be penalized if the rate parameter is very near a boundary?
#' @param convergeTol Convergence is extremely roughly defined in \code{TEfits} as the SD of the same estimated parameter on different runs with relatively low error. What should this SD be?
#' @param stepwise_asym Logical. If a function will saturate by the end of the measurement time, this option allows the asymptote to be estimated from this time period (i.e., as stationary).
#' @param explicit Character. Rather than using any of the pre-defined change or link functions, enter the specific function you want to test.
#' @param nTries Numeric. What is the maximum number of optimization runs that should be attempted?
#'
#' @export
#'
tef_control <- function(quietErrs = F,
suppressWarnings = F,
nTries = 200,
y_lim = c(-1E7,1E7),
rate_lim = c(0,0),
shape_lim = c(0,0),
expBase = 2,
rateBase = 2,
pFix = c(),
penalizeMean = T,
penalizeRate = F,
convergeTol = 5E-2,
stepwise_asym = F,
explicit = ''
){
return(list(
quietErrs = quietErrs,
suppressWarnings = suppressWarnings,
nTries = nTries,
y_lim = y_lim,
rate_lim = rate_lim,
shape_lim = shape_lim,
expBase = expBase,
rateBase = rateBase,
pFix = pFix,
penalizeRate = penalizeRate,
penalizeMean = penalizeMean,
convergeTol = convergeTol,
stepwise_asym = stepwise_asym,
explicit = explicit
))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.